检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜美君 张伟[1] 谢亚莲 DU Meijun;ZHANG Wei;XIE Yalian(School of Optoelectronic Information and Computer Engineering, University of Shanghai for Science andTechnology,Shanghai 200093,China)
出 处:《电子科技》2019年第6期7-11,共5页Electronic Science and Technology
基 金:国家自然科学基金青年基金(11502145)~~
摘 要:粒子群算法是一种智能算法,在PID控制器参数整定的应用中可取得更优的效果。为解决传统的粒子群算法早熟收敛和收敛速度慢的缺点,文中采用了一种基于相似度动态调整惯性权重的方法,即越靠近目前最优粒子的个体被赋予越小的惯性权重值。最后用MATLAB对等温连续搅拌釜反应器仿真。与标准的PSO算法整定方法相比,改进的粒子群算法稳定时间为230.1s,比传统粒子群算法524.7s的稳定时间缩小了一半,表明改进的算法对PID控制器的参数优化有着较优的收敛效果。Particle swarm optimization is an intelligent algorithm that can achieve better results in the application of PID controller parameter tuning. In order to solve the shortcomings of the premature convergence and slow convergence of the traditional particle swarm optimization algorithm, this paper adopted a method of dynamically adjusting the inertia weight based on the similarity, that was, the closer to the current optimal particle, the smaller the inertia weight value was assigned. Finally, MATLAB was used to simulate the isothermal continuous stirred tank reactor. Compared with the standard PSO tuning method, the improved particle swarm algorithm had a settling time of 230.1 s, which was half the stability time of the conventional particle swarm optimization algorithm of 524.7 s, indicating that the improved algorithm had better parameters optimization for the PID controller.
关 键 词:改进PSO算法 PID控制器 参数整定 相似度 惯性权重 搅拌釜反应器 仿真
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.131.79