检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈毅 符磊[2,3,4] 张剑 黄石磊[4,5] CHEN Yi;FU Lei;ZHANG Jian;HUANG Shi-lei(Key Laboratory of Optical Communication and Networks, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei 230601, China;Peking University Shenzhen Institute,Shenzhen 518057, China;IMSL Shenzhen Key Lab, PKU-HKUST Shenzhen Hong Kong Institution, Shenzhen 518057, China;Industrial Development Center, PKU-HKUST Shenzhen Hong Kong Institution, Shenzhen 518057, China)
机构地区:[1]重庆邮电大学光通信与网络重点实验室,重庆400065 [2]安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230601 [3]北京大学深圳研究院,广东深圳518057 [4]深港产学研基地深圳市智能媒体和语音重点实验室,广东深圳518057 [5]深港产学研基地产业发展中心,广东深圳518057
出 处:《计算机工程与设计》2019年第6期1769-1774,共6页Computer Engineering and Design
基 金:国家自然科学基金项目(U1613209);深圳市科技计划基金项目(JCYJ20170307151743672、JCYJ2015030154330711)
摘 要:为有效解决传统简历解析方法效率低、成本高、泛化能力差的问题,提出一种基于字序列的非结构化文本简历解析方法。利用BLSTM对字序列进行建模,获得一个包含字序列信息的词表示;由BLSTM神经网络强大的学习能力对特征进行学习,获得相应的特征;根据前后标签的约束,使用CRF获得最优标签序列(CBLSTM-CRF);利用梯度下降算法训练神经网络,使用预训练字向量、Dropout优化神经网络,完成对中文简历的解析工作。实验结果表明,CBLSTM-CRF方法对简历解析的效果优于传统方案,利用BLSTM对字序列进行建模的方法在其它模型上也取得了较好的效果。To solve the problem of low efficiency, high cost and poor generalization ability of traditional resume analysis methods effectively, an unstructured text resume analysis method based on character sequence model was proposed. A BLSTM neural network was employed to model character sequences and obtain the corresponding internal features of words. The strong learning ability of BLSTM was used to learn the features and the corresponding features were extracted. According to the constraints of the front and rear labels, the CRF was utilized to obtain the optimal labeling sequence (CBLSTM-CRF). All of the neural networks were trained using the gradient descent algorithm and optimized using the pretrained character embeddings and Dropout. Experimental results show that CBLSTM-CRF method is superior to the traditional schemes. And employing the BLSTM neural network to model character sequences achieves better results in other models.
关 键 词:中文简历 字序列 非结构化 神经网络 条件随机场
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28