检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程俊华 曾国辉[1] 鲁敦科 黄勃[1] CHENG Junhua;ZENG Guohui;LU Dunke;HUANG Bo(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学电子电气工程学院
出 处:《计算机应用》2019年第6期1601-1606,共6页journal of Computer Applications
基 金:国家自然科学基金资助项目(61603242);江西省经济犯罪侦查与防控技术协同创新中心开放课题(JXJZXTCX-030)~~
摘 要:针对深度卷积神经网络(CNN)中的过拟合问题,提出一种基于Dropout改进CNN的模型预测平均方法。首先,训练阶段在池化层引入Dropout,使得池化层单元值具有稀疏性;然后,在测试阶段将训练时池化层Dropout选择单元值的概率与池化区域各单元值所占概率相乘作为双重概率;最后,将提出的双重概率加权的模型平均方法应用于测试阶段,使得训练阶段池化层Dropout的稀疏效果能够更好地反映到测试阶段池化层上,从而使测试错误率达到与训练的较低错误率相近的结果。在给定大小的网络中所提方法在MNIST和CIFAR-10数据集上的测试错误率分别为0.31%和11.23%。实验结果表明:仅考虑池化层对结果的影响,所提方法与Prob.weighted pooling和Stochastic Pooling方法相比具有更低的错误率,表明池化层Dropout使得模型更具泛化性,并且池化单元值对于模型泛化具有一定帮助,能够更有效避免过拟合。In order to effectively solve the overfitting problem in deep Convolutional Neural Network(CNN), a model prediction averaging method based on Dropout improved CNN was proposed. Firstly, Dropout was employed in the pooling layers to sparse the unit values of pooling layers in the training phase. Then, in the testing phase, the probability of selecting unit value according to pooling layer Dropout was multiplied by the probability of each unit value in the pooling area as a double probability. Finally, the proposed double-probability weighted model averaging method was applied to the testing phase, so that the sparse effect of the pooling layer Dropout in the training phase was able to be better reflected on the pooling layer in the testing phase, thus achieving the low testing error as training result. The testing error rates of the proposed method in the given size network on MNIST and CIFAR-10 data sets were 0.31% and 11.23% respectively. The experimental results show that the improved method has lower error rate than Prob. weighted pooling and Stochastic Pooling method with only the impact of pooling layer on the results considered. It can be seen that the pooling layer Dropout makes the model more generalized and the pooling unit value is helpful for model generalization and can effectively avoid overfitting.
关 键 词:深度学习 卷积神经网络 Dropout正则化 过拟合 模型平均
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222