检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王容川 庄志洪[1] 王宏波[1] 陆锦辉[1] WANG Rongchuan;ZHUANG Zhihong;WANG Hongbo;LU Jinhui(School of Electronic and Optical Engineering, NUST, Nanjing 210094, China)
机构地区:[1]南京理工大学电子工程和光电技术学院
出 处:《现代雷达》2019年第5期33-38,共6页Modern Radar
摘 要:卷积神经网络通过卷积和池化操作提取图像在各个层次上的特征进而对目标进行有效识别,是深度学习网络中应用最广泛的一种。文中围绕一维距离像雷达导引头自动目标识别,开展基于卷积神经网络的目标高分辨距离像分类识别方法研究。首先,基于空中目标一维距离像姿态敏感性仿真生成近似平行交会条件下不同类型目标的高分辨距离像数据集;其次,构建一种一维卷积神经网络结构对目标高分辨距离像进行分类识别;作为比较,针对同类高分辨距离像数据集,分析了主成分分析-支持向量机方法的目标分类识别效果。结果表明:基于卷积神经网络的目标分类识别算法有更好的识别能力,对高分辨距离像的姿态敏感性具有较强的适应性。Convolutional neural network (CNN) is a deep learning network which has been widely used. CNN has a good performance on target classification and recognition. Features of images can be extracted by CNN through convolution and pooling operations. A radar automatic target recognition algorithm has been discussed in this paper. It is based on high range resoluton profile (HRRP) and CNN. Firstly, HRRPs of several air targets under approximately parallel intersection conditions have been generated to construct the dataset. Then, a CNN has been used to classify and recognize the HRRPs. Finally, the result with another algorithm which is based on principal component analysis and support vector machine are compured, that CNN has a better performance and strong adaptability to the attitude sensitivity of HRRPs.
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166