检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨庆之 黄鹏斐[2] 刘亚君 Yang Qingzhi;Huang Pengfei;Liu Yajun(School of Mathematics and Statistics, Kashi University, Kashi 844008, China;School of Mathematical Sciences, Nankai UniversityTianjin 300071, China)
机构地区:[1]喀什大学数学与统计学院,喀什844008 [2]南开大学数学科学学院,天津300071
出 处:《数值计算与计算机应用》2019年第2期130-142,共13页Journal on Numerical Methods and Computer Applications
基 金:新疆维吾尔自治区自然科学基金(2017D01A14,2018D01A01)资助
摘 要:刻画玻色-爱因斯坦凝聚态(BEC)的Gross-Pitaevskii方程通过差分方法离散,转化成一类非线性特征值问题(BEC问题).在这篇文章中,讨论了对BEC问题的求解方法,并给出数值算例.通过半定松弛的方法(SDP松弛方法)和交替方向乘子法(ADMM),计算BEC问题的最小非线性特征值的一个界;通过Lasserre半定松弛,可以依次地计算BEC问题的所有实非线性特征值.在数值算例中,从求解问题的规模和求解速度两方面比较了SDP松弛方法和ADMM,同时用matlab自带的fmincon方法来求解,初步比较了它们的数值计算结果.The Gross-Pitaevskii equation, which depicts the Bose-Einstein condensate state(BEC),is discretized by a differential method and transformed into a class of nonlinear eigenvalue problems(BEC problem). This article discusses the solution to the BEC problem and give numerical examples. A bound of the minimum nonlinear eigenvalue of the BEC problem is calculated by the semidefinite programming relaxation method(SDP relaxation method)and the alternating direction multiplier method(ADMM);all real nonlinear eigenvalues of the BEC problem can be calculated sequentially by Lasserre semidefinite programming relaxation. In the numerical example, comparing the SDP relaxation method and ADMM from the scale of the problem and the speed of solving the problem. At the same time, using the fmincon method that comes with matlab to solve the problem and compare their results preliminarily.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43