可控励磁直线同步电动机的全局积分Terminal滑模控制  被引量:6

Global integral terminal sliding mode control for controllable excitation linear synchronous motor

在线阅读下载全文

作  者:蓝益鹏[1] 王靖腾 刘欣 LAN Yi-peng;WANG Jing-teng;LIU Xin(School of Electrical Engineering,Shenyang University of Technology,Shenyang Liaoning 110870,China)

机构地区:[1]沈阳工业大学电气工程学院

出  处:《控制理论与应用》2019年第6期931-938,共8页Control Theory & Applications

基  金:国家自然科学基金项目(51575363)资助~~

摘  要:为提高可控励磁直线磁悬浮同步电动机进给系统的快速性与鲁棒性,提出全局积分Terminal滑模控制策略.构造新型的全局积分Terminal滑模面,对系统状态任意初值可在有限时间内收敛到零点,在趋近律中引入衰减因子,可减小系统抖振;在构造滑模面和趋近律的基础上设计全局积分Terminal滑模速度控制器;为进一步削弱滑模控制的抖振,减小切换增益,用径向基函数神经网络设计扰动观测器,并对扰动进行前馈补偿控制.仿真结果表明全局积分Terminal滑模控制策略能够明显改善系统的动态性能,缩短误差的收敛时间,提高系统抑制扰动的能力,削弱系统的抖振,增强系统的鲁棒性.In order to improve the fastness and robustness of the feeding system of controllable Excitation Linear magnetic levitation synchronous motor,a global integral terminal sliding mode control strategy is proposed.By constructing a new type of global integral terminal sliding surface,any initial value of the state of the system can converge to zero within a finite time.By introducing the attenuation factor into the reaching law,the system chattering can be reduced.On the basis of constructing the sliding surface and the reaching law,a speed global integral terminal sliding mode controller is designed.In order to further weaken the chattering of sliding mode control and reduce the switching gain,the disturbance observer is designed by radial basis function neural network and the feedforward compensation control of the disturbance is carried out.The simulation results show that the global integral terminal sliding mode control strategy can significantly improve the dynamic performance of the system,shorten the error convergence time,and improve the ability of the system to suppress the disturbance,weaken the system chattering and enhance the system robustness.

关 键 词:可控励磁 直线电动机 滑模控制 径向基函数神经网络 

分 类 号:TM359.4[电气工程—电机] TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象