检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卞红雨 陈奕名[1,2,3] 张志刚 蒋弘瑞[1,2,3] BIAN Hongyu;CHEN Yiming;ZHANG Zhigang;JIANG Hongrui(Acoustic Science and Technology Laboratory, Harbin Engineering University Harbin 150001;Key Laboratory of Marine Information Acquisition and Security (Harbin Engineering University), Ministry of Industry and Information Technology Harbin 150001;College of Underwater Acoustic Engineering, Harbin Engineering University Harbin 150001)
机构地区:[1]哈尔滨工程大学水声技术重点实验室,哈尔滨150001 [2]海洋信息获取与安全工信部重点实验室(哈尔滨工程大学)工业和信息化部,哈尔滨150001 [3]哈尔滨工程大学水声工程学院,哈尔滨150001
出 处:《声学学报》2019年第3期353-359,共7页Acta Acustica
基 金:国家自然科学基金项目(61633009)资助
摘 要:研究了在较低信噪比下,在保证检测概率的前提下尽量降低虚警概率的目标检测,提出了一种针对特定目标的两阶段筛选算法.第一阶段中,首先使用阈值分割出有效点,并定义了一种新的像素重要性测量特征用于初步筛选目标。即通过有效像素点之间的距离来赋以高斯分布的权值,当前像素重要性的值定义为剩余有效点的距离加权和,具有较高的像素重要性值的聚集性强的区域内像素点会被定位出来。第二阶段,使用卷积神经网络分类器排除虚假目标.在实验中,使用近期无人潜器获得的海底数据,召回率与虚警概率分别达到90.39%与2.39%,证明了其相比声呐目标检测主流算法有更好的检测能力。The prior task is to stabilize the detection ability and reduce false alarm probability simultaneously underlow signal-noise ratio condition. A two-stage novel pixel importance measurement algorithm in the side-scan sonar detection application is proposed. In first stage of the algorithm, a new feature defined as Pixel Importance Value(PIV) is proposed based on distances between the target pixel and each other pixels. PIV measurement of current pixel is defined as the weighted sum of all remaining segmented pixels. The weighted part refers to Gaussian kernel, which means closer pixels gets higher weight. Thus, targets with higher pixel importance value can be located. In the second stage, we use convolutional neural network as classifier to eliminate the dot-like false targets in terms of targets shape. In our experiments based on recent underwater data obtained by autonomous underwater vehicle, we demonstrate superior performance of our algorithm over the state-of-the-art sonar detection algorithms in terms of 90.39% recall rate and 2.39% false alarm probability.
关 键 词:目标检测 侧扫声呐 像素点 特征 测量 神经网络分类器 筛选算法 虚警概率
分 类 号:U666.7[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28