检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭良刚 PENG Lianggang(Bijie Medical College, Bijie,Guizhou 551700)
出 处:《科教导刊》2019年第11期33-34,共2页The Guide Of Science & Education
摘 要:近年来贵州省普通高校选拔优秀专科生进入本科院校考试真题等式和不等式证明题已成为考试题中的重点和难点,学生在解决此类题目时往往会感觉无从下手,难以找到问题的切入点。本文着眼于构造辅助函数,利用Lagrange中值定理对等式及不等式证明题进行证明。结果表明:通过构造辅助函数后,再利用Lagrange中值定理解决此类问题更容易找到问题的切入点并且使问题简单化具体化;此外,学生熟练掌握此技巧后,会增强其自信心,解决该类证明题时更加得心应手。In recent years, it has become a key and difficult point in the examination questions to select outstanding college students to enter undergraduate colleges. Students often feel that there is no way to solve such problems and it is difficult to find problems Entry point. This paper focuses on the construction of auxiliary functions and uses Lagrange’s median value theorem to prove the equivalence and inequality. The results show that, after constructing the auxiliary function, it is easier to find the entry point of the problem and make the problem simplify and concrete by using Lagrange’s median value theorem. In addition, after students master this skill, they will increase their self-confidence and solve this type of proof problem more easily.
关 键 词:专升本考试 证明 辅助函数 LAGRANGE中值定理
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145