Lagrange中值定理在贵州专升本数学证明题上的应用  

Application of Lagrange's Mean Value Theorem in the Mathematical Prove of Guizhou Special Upgrade

在线阅读下载全文

作  者:彭良刚 PENG Lianggang(Bijie Medical College, Bijie,Guizhou 551700)

机构地区:[1]毕节医学高等专科学校,贵州毕节551700

出  处:《科教导刊》2019年第11期33-34,共2页The Guide Of Science & Education

摘  要:近年来贵州省普通高校选拔优秀专科生进入本科院校考试真题等式和不等式证明题已成为考试题中的重点和难点,学生在解决此类题目时往往会感觉无从下手,难以找到问题的切入点。本文着眼于构造辅助函数,利用Lagrange中值定理对等式及不等式证明题进行证明。结果表明:通过构造辅助函数后,再利用Lagrange中值定理解决此类问题更容易找到问题的切入点并且使问题简单化具体化;此外,学生熟练掌握此技巧后,会增强其自信心,解决该类证明题时更加得心应手。In recent years, it has become a key and difficult point in the examination questions to select outstanding college students to enter undergraduate colleges. Students often feel that there is no way to solve such problems and it is difficult to find problems Entry point. This paper focuses on the construction of auxiliary functions and uses Lagrange’s median value theorem to prove the equivalence and inequality. The results show that, after constructing the auxiliary function, it is easier to find the entry point of the problem and make the problem simplify and concrete by using Lagrange’s median value theorem. In addition, after students master this skill, they will increase their self-confidence and solve this type of proof problem more easily.

关 键 词:专升本考试 证明 辅助函数 LAGRANGE中值定理 

分 类 号:O13[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象