基于Leap Motion的动态手势识别  被引量:8

Dynamic Gesture Recognition Based on Leap Motion

在线阅读下载全文

作  者:孙玉 袁贞明 孙晓燕 SUN Yu;YUAN Zhenming;SUN Xiaoyan(Hangzhou Institute of Service Engineering,Hangzhou Normal University,Hangzhou 311121,China;Engineering Research Center of Mobile Health Management System,Ministry of Education,Hangzhou 311121,China)

机构地区:[1]杭州师范大学杭州国际服务工程学院,杭州311121 [2]移动健康管理系统教育部工程研究中心,杭州311121

出  处:《计算机工程与应用》2019年第13期151-157,共7页Computer Engineering and Applications

基  金:浙江省自然科学基金(No.LQ16H180004)

摘  要:动态手势识别作为人机交互的一个重要方向,在各个领域具有广泛的需求。相较于静态手势,动态手势的变化更为复杂,对其特征的充分提取与描述是准确识别动态手势的关键。为了解决对动态手势特征描述不充分的问题,利用高精度的Leap Motion传感器对手部三维坐标信息进行采集,提出了一种包含手指姿势和手掌位移的特征在内的、能够充分描述复杂动态手势的特征序列,并结合长短期记忆网络模型进行动态手势识别。实验结果表明,提出的方法在包含16种动态手势的数据集上的识别准确率为98.50%;与其他特征序列的对比实验表明,提出的特征序列,能更充分准确地描述动态手势特征。Dynamic gesture recognition is one of the most important topics in human-computer interaction. Compared with static gestures, the change of dynamic gestures is more complicated. The full extraction and description of dynamic gesture features is the key to accurately identify dynamic gestures. In order to solve the problem of insufficient description of dynamic gesture features and low recognition efficiency, this paper proposes a feature sequence that can fully describe dynamic gestures and realize effective description of dynamic gestures. High-precision Leap Motion sensor is used to acquire hand parameters diametrically. A sequence feature including fingertips angles, fingertips distances, fingertips elevations and palm speed is proposed. In addition, the sequence is combined with Long Short-Term Memory(LSTM) network model for dynamic gesture recognition. And by analyzing the experimental results on the dynamic gesture dataset, a dataset containing 16 dynamic gestures is collected by Leap Motion, which contains complex finger changes and hand movements. The dataset is named LM-16. The experimental results show that the recognition accuracy of this method for the LM-16 dataset is 98.50%. Furthermore, experiments are carried out by using other feature sequences to compare the influence of feature sequences on dynamic gestures recognition.

关 键 词:动态手势识别 Leap Motion传感器 特征提取 长短期记忆网络(LSTM) 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象