基于距离统计的有序纹理点云离群点检测  被引量:1

Outlier Detection Based on Distance Statistics for Ordered Texture Point Cloud

在线阅读下载全文

作  者:黄旺华[1] 王钦若[1] HUANG Wang-hua;WANG Qin-ruo(School of Automation,Guangdong University of Technology,Guangzhou,Guangdong 510006,China)

机构地区:[1]广东工业大学自动化学院

出  处:《计算技术与自动化》2019年第1期139-144,共6页Computing Technology and Automation

摘  要:三维数据的离群点检测是纹理点云数据处理的重要内容之一,为了有效快速地检测离群点,根据纹理点云的有序结构特征,提出了基于距离统计的检测算法。首先在每个点到其K邻域中其他点距离的基础上计算出K邻域距离;然后根据有序点云中该距离符合正态分布的特点和正态分布3σ定理,将超出3倍方差范围的点认定为离群点。实验结果显示算法采用曼哈顿-最大距离进行检测,当K为4时可以更加快速准确地将有序点云中的离群点检测出来。由此得出,基于距离统计的算法可以有效地将离群点检测出来,同时成功地应用于纹理点云的离群点检测。3D outlier detection is an important processing of texture point cloud,in order to effectively detect the outlier quickly, a outlier detection method based on distance statistics is proposed,according to the ordered structure characteristic of texture point cloud. K neighborhood distance of every point is calculated by the distances between the point and its every K neighborhood point firstly;and then as the K neighborhood distance of ordered point cloud follow the normal distribution and the normal distribution 3σ theorem,the point will be detected as outlier point if its K neighborhood distance is beyond 3σrange. The result of experiments show that the proposed method can more quickly and accurately to detect outlier,if Manhattan-Maximum distance is adapted and K is 4. The conclusion is that the outlier detection method based on distance statistics can effectively detect outliers,and is applied on texture point cloud successfully.

关 键 词:离群点检测 距离统计 K邻域距离 正态分布3σ定理 有序点云 

分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象