检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李恒超[1] 谭蓓 杨刚 石超群[2] 张血琴 吴广宁[2] LI Hengchao;TAN Bei;YANG Gang;SHI Chaoqun;ZHANG Xueqin;WU Guangning(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610031,China;School of Electrical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
机构地区:[1]西南交通大学信息科学与技术学院,四川成都610031 [2]西南交通大学电气工程学院,四川成都610031
出 处:《西南交通大学学报》2019年第4期686-693,共8页Journal of Southwest Jiaotong University
基 金:国家自然科学基金资助项目(61371165);中央高校前沿交叉基础研究项目(A0920502051814-5);中央高校基本科研业务费专项资金资助项目(2682017CX044)
摘 要:高光谱成像技术能对绝缘子进行非接触式成像,且具有多波段、图谱合一等特点.为此,本文提出一种基于高光谱成像技术的绝缘子污秽度预测方法.首先,利用高光谱成像仪对绝缘子进行成像,得到400~1 000 nm波段范围内的高光谱图像数据,并进行黑白校正;然后,获取感兴趣区域(region of interest,ROI)的反射率光谱曲线,进行Savitzky-Golay平滑、对数或一阶导数变换的预处理.最后,联合部分的真实样本标签数据分别建立基于支持向量机的绝缘子污秽度预测(support vector machines-insulator contamination degree prediction,SVM-ICDP)和基于偏最小二乘回归的绝缘子污秽度预测(partial least squares regression-insulator contamination degreeprediction,PLSR-ICDP)模型.从实验结果中可知,当预处理方法采用一阶导数变换时,所建立的绝缘子污秽度预测模型效果最佳,即SVM-ICDP模型准确率达到91.84%;PLSR-ICDP模型的均方根误差(root mean square error,RMSE)为0.024 1.Insulator image can be acquired by hyperspectral imaging technology in a non-contact way,and hyperspectral image has some advantages such as the properties of multi-band,and merging image and spectrum.For this reason,the paper proposes a method to predict contamination degree of insulators based on hyperspectral imaging technology.Firstly,the hyperspectral image in a band range of 400–1 000 nm is acquired by hyperspectral imaging system,followed by the black-and-white correction.Then,some reflectivity spectrum curves of region of interest(ROI)are extracted and further pre-processed by the methods such as the Savitzky-Golay smoothness,logarithm,or first derivative transformations.Finally,some labeled data of real samples are utilized to build support vector machines based insulator contamination degree prediction(SVM-ICDP)model and partial least squares regression based insulator contamination degree prediction(PLSR-ICDP)model,respectively.The experimental results show that when the first derivative transformation is selected as the pre-processing method,the performance of the ICDP model is superior to those of the others.More specifically,the accuracy of SVMICDP reaches 91.84%,and the root mean square error(RMSE)of PLSR-ICDP is 0.024 1.
关 键 词:高光谱成像 绝缘子污秽度 支持向量机 偏最小二乘回归 预测模型
分 类 号:TM85[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.92.44