压电陶瓷驱动器迟滞非线性建模及逆补偿控制  被引量:6

Hysteresis nonlinear modeling and inverse compensation of piezoelectric actuators

在线阅读下载全文

作  者:刘鑫[1,2,3] 李新阳 杜睿[1,2] Liu Xin;Li Xinyang;Du Rui(Key Laboratory of Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;University of Chinese Academy of Sciences, Beijing 100049, China)

机构地区:[1]中国科学院自适应光学重点实验室,四川成都610209 [2]中国科学院光电技术研究所,四川成都610209 [3]中国科学院大学,北京100049

出  处:《光电工程》2019年第8期23-30,共8页Opto-Electronic Engineering

基  金:国家重点研发计划项目(2017YFB0405100)~~

摘  要:自适应光学系统中的倾斜镜、变形镜通常是应用压电陶瓷驱动器来进行精密位移控制,但压电陶瓷驱动器都有较大的非线性迟滞效应,对系统定位性能造成了一定的影响。为了补偿迟滞现象,需要对迟滞效应进行建模。本文通过引入迟滞算子,使用贝叶斯正则化训练算法训练BP神经网络来构建压电陶瓷驱动器迟滞模型,以中国科学院光电技术研究所自主研制的压电陶瓷驱动器为对象开展了实验研究。实验结果表明,通过BP神经网络构建的压电陶瓷驱动器迟滞模型具有较准确的辨识能力,其中正模型的相对误差为0.0127,逆模型的相对误差为0.014。利用所建立的模型,压电陶瓷驱动器的非线性度从14.6%降低到了1.43%。The tilt mirrors and deformable mirrors in adaptive optics system are usually using piezoelectric ceramic actuators for precise displacement, however, piezoelectric ceramic actuators own obviously nonlinear hysteresis effect which affects the positioning performance of the system. In order to compensate the hysteresis, there is a need to model hysteresis effects. In this paper, hysteresis operator is introduced and using Bayesian regularization training algorithm to train BP neural network to construct hysteresis model of piezoelectric ceramic actuator, an experimental study was conducted on a piezoelectric actuator developed by Institute of Optics and Electronics, Chinese Academy of Sciences. The final experimental results show that the hysteresis model of piezoelectric ceramic actuators constructed by BP neural network has more accurate identification capability. The relative error of the positive model is 0.0127 and the relative error of the inverse model is 0.014. The nonlinearity of the piezoelectric actuators has been reduced from 14.6% to 1.43%.

关 键 词:自适应光学 压电陶瓷驱动器 迟滞效应 神经网络 迟滞算子 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置] TH703[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象