检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周国华 卢剑炜[1] 顾晓清 殷新春[2] ZHOU Guo-hua;LU Jian-wei;GU Xiao-qing;YIN Xin-chun(Department of Information Engineering,Changzhou Institute of Industry Technology,Changzhou,Jiangsu 213164,China;College of Information Engineering,Yangzhou University,Yangzhou Jiangsu 225127,China;School of Information Science and Engineering,Changzhou University,Changzhou,Jiangsu 213164,China)
机构地区:[1]常州工业职业技术学院信息工程系,江苏常州213164 [2]扬州大学信息工程学院,江苏扬州225127 [3]常州大学信息科学与工程学院,江苏常州213164
出 处:《电子学报》2019年第8期1708-1716,共9页Acta Electronica Sinica
基 金:国家自然科学基金(No.61472343,No.61806026);江苏省自然科学基金(No.BK20180956);院创新团队项目(No.YB201813101005)
摘 要:为解决传统一类支持向量机对噪声数据敏感和不适用于大规模分类等问题,提出了用于大规模噪声环境的基于简约凸壳的一类模糊支持向量机(OC-FSVM-RCH).OC-FSVM-RCH根据简约凸壳的定义在核空间得到代表正常类数据几何特征的样本,然后基于改进的模糊支持向量域描述算法,使得正常类数据包含在最小超球内,异常数据与超球间隔最大化.OC-FSVM-RCH剔除正常类数据轮廓边缘处的噪声,同时对数据内部的噪声不敏感.实验结果表明了所提算法在性能和训练时间上取得了良好的效果.The traditional one-class support vector machines are sensitive to noise data and not suitable for large-scale classification.In order to solve the problem,a novel one-class fuzzy support vector machine based on reduced convex hull called OC-FSVM-RCH is proposed for large-scale noise data classification.According to the reduced convex hull,OC-FSVM-RCH obtains the samples representing the geometric characteristics of normal class data in the kernel space.Then OC-FSVM-RCH improves the fuzzy support vector domain description algorithm,in which normal class data is enclosed in the smallest hypersphere,and the margin between abnormal class data and hypersphere is maximized.OC-FSVM-RCH can eliminate the noise at the edge of normal data contour and is insensitive to the noise inside the normal data.Experimental results show that the proposed algorithm achieves good results in terms of performance and training time.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.60.124