检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张功国 吴建[1] 易亿 王梓权 孙海霞 ZHANG Gongguo;WU Jian;YI Yi;WANG Ziquan;SUN Haixia(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)
机构地区:[1]重庆邮电大学通信与信息工程学院
出 处:《重庆邮电大学学报(自然科学版)》2019年第4期571-577,共7页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:国家自然科学基金(61571071)~~
摘 要:以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN)方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。This paper presents a traffic sign recognition algorithm based on ensemble convolution neural network to study traffic identification.The multiple convolutional neural networks of different structures are integrated to improve the algorithm recognition rate.The structure of a single convolutional neural network is optimized to shorten the network training,test time and improve the network recognition rate.First,the rectified linear unit (ReLU) activation function is used to replace the traditional activation function.Then,batch normalization (BN) method is used to normalize the output data of convolution layer.Finally,the classifier of convolution neural network is replaced by SVM.This paper uses the German traffic sign recognition benchmark (GTSRB) for training and testing,and the experimental results show that the algorithm recognition rate is 98.29% and the image test time of single traffic sign is 1.32 ms,which has good recognition performance for traffic signs.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13