基于集成卷积神经网络的交通标志识别  被引量:25

Traffic sign recognition based on ensemble convolutional neural network

在线阅读下载全文

作  者:张功国 吴建[1] 易亿 王梓权 孙海霞 ZHANG Gongguo;WU Jian;YI Yi;WANG Ziquan;SUN Haixia(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)

机构地区:[1]重庆邮电大学通信与信息工程学院

出  处:《重庆邮电大学学报(自然科学版)》2019年第4期571-577,共7页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)

基  金:国家自然科学基金(61571071)~~

摘  要:以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN)方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。This paper presents a traffic sign recognition algorithm based on ensemble convolution neural network to study traffic identification.The multiple convolutional neural networks of different structures are integrated to improve the algorithm recognition rate.The structure of a single convolutional neural network is optimized to shorten the network training,test time and improve the network recognition rate.First,the rectified linear unit (ReLU) activation function is used to replace the traditional activation function.Then,batch normalization (BN) method is used to normalize the output data of convolution layer.Finally,the classifier of convolution neural network is replaced by SVM.This paper uses the German traffic sign recognition benchmark (GTSRB) for training and testing,and the experimental results show that the algorithm recognition rate is 98.29% and the image test time of single traffic sign is 1.32 ms,which has good recognition performance for traffic signs.

关 键 词:卷积神经网络 集成学习 批量归一化 支持向量机 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象