检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马晓云 朱丹[1,2,3,4,5] 金晨[1,2,4,5] 佟新鑫 Ma Xiaoyun;Zhu Dan;Jin Chen;Tong Xinxin(Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China;Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China;University of Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Opto-Electronic Information Processing, CAS, Shenyang, Liaoning 110016, China;The Key Lab of Image Understanding and Computer Vision,Shenyang, Liaoning 110016, China)
机构地区:[1]中国科学院沈阳自动化研究所,辽宁沈阳110016 [2]中国科学院机器人与智能制造创新研究院,辽宁沈阳110016 [3]中国科学院大学,北京100049 [4]中国科学院光电信息处理实验室,辽宁沈阳110016 [5]辽宁省图像理解与视觉计算重点实验室,辽宁沈阳110016
出 处:《激光与光电子学进展》2019年第15期109-116,共8页Laser & Optoelectronics Progress
摘 要:为了实现子弹外观缺陷的自动检测,解决传统机器视觉方法在缺陷检测方面手工设计目标特征耗时和泛化能力差的问题,针对子弹外观缺陷数据集,采用K-means++算法改进锚框的生成方法,提出了Faster R-CNN子弹外观缺陷检测模型。该模型采用卷积神经网络,可以自动提取目标特征,泛化能力强。将该检测模型分别与ZFNet、VGG_CNN_M_1024和VGG16结合,结果表明,与VGG16结合的检测模型的检测精度高于其他两种模型方案,并且在所提算法的基础上,精度提升到了97.75%,速度达到28frame·s^-1。To realize automatic detection of bullet appearance defects and to overcome the limitations associated with traditional machine vision methods,i.e.,excessive time required to manually design a target feature and generalization ability is poor in defect detection,we use the K-means++ algorithm to improve the anchor frame generation method and propose a bullet appearance defect detection model based on the improved faster regionconvolutional neural network(R-CNN).The proposed model uses a CNN that can automatically extract target features and has strong generalization ability.The detection model is combined with ZFNet,VGG_CNN_M_1024,and VGG16,respectively.Results demonstrate that the detection accuracy of the detection model combined with VGG16 is higher than the others.The results show that that of the improved model demonstrates 97.75%accuracy and the speed reaches 28 frame·s^-1.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52