检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯雅兴 龚希[1,2] 徐永洋 谢忠[1,2] 蔡惠慧 吕霞[2,3] FENG Ya-xing;GONG Xi;XU Yong-yang;XIE Zhong;CAI Hui-hui;LV Xia(School of Information Engineering,China University of Geosciences,Wuhan 430074;National Engineering Research Center of Geographic Information System,China University of Geosciences,Wuhan 430074;Development and Research Center of China Geological Survey,Beijing 100037,China)
机构地区:[1]中国地质大学(武汉)信息工程学院,湖北武汉430074 [2]中国地质大学(武汉)国家地理信息系统工程技术研究中心,湖北武汉430074 [3]中国地质调查局发展研究中心,北京100037
出 处:《地理与地理信息科学》2019年第5期89-94,共6页Geography and Geo-Information Science
基 金:国家自然科学基金项目(41671400)
摘 要:目前岩性识别多基于人工判别方法,需要一定的专业背景和丰富的判别经验。该文提出基于岩石新鲜面图像与孪生卷积神经网络结构的深度学习岩性自动识别方法,兼顾岩石数据的全局图像信息和局部纹理信息。首先利用孪生卷积神经网络中的子通道提取岩石图像的全局和局部特征信息,再将特征信息融合以构建统一描述子,最后根据描述子信息识别岩性。选取野外拍摄的岩石图像作为模型验证数据,通过专家命名构建深度学习样本库对模型进行验证和分析。实验结果表明,该文提出的基于AlexNet孪生卷积神经网络对岩石数据的适用性较强,对岩性的识别精度达89.4%,能很好地区分岩石类型。Lithology recognition is mostly based on artificial identification methods,and it needs professional background and rich experience.An automatic deep learning lithology recognition method based on fresh rock images and twins convolution neural network structure is proposed in this paper,which takes full advantages of the global and local context information of rock data.The proposed method first extracts global and local feature information from rock images by sub-channels of twins convolution neural network,then fuses the extracted features to construct a unified descriptor,and finally recognizes rock lithology according to the descriptor.The rock images taken in the field are selected as experimental data,the model is validated and analyzed by using a deep learning sample bank named by experts.The results show that the proposed method based on AlexNet twins convolution neural network is more applicable to rock data.The lithology recognition accuracy achieves 89.4%.The model proposed in this paper can distinguish rock types very well and has certain practical value.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117