检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐孝琳 樊亚莉[1] 苏依官 XU Xiaolin;FAN Yali;SU Yiguan(College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]上海理工大学理学院
出 处:《上海理工大学学报》2019年第4期331-338,共8页Journal of University of Shanghai For Science and Technology
基 金:国家自然科学基金资助项目(11401383)
摘 要:基于广义经验似然估计方法,提出了一种有效且稳健的估计,实现对纵向数据在线性模型下均值和协方差矩阵的联合估计。利用Cholysky分解将模型重参数化,利用拉格朗日乘子法求出估计值,再还原出均值和协方差矩阵的估计。在模拟研究中将所提方法同文献中其他稳健估计进行比较,结果显示所提方法效率更高。最后将所提方法用于分析CD4细胞数据,交叉验证结果显示所提方法更加可靠。Based on the generalized empirical likelihood estimation method,a robust and effective estimation was proposed to realize the joint estimation of the mean and covariance matrix of longitudinal data in linear models.Using the Cholysky decomposition,the model was re-parameterized, and using the Lagrangian multiplier method,estimates were obtained,then,an estimate of the mean and covariance matrix was restored.Comparing the proposed method with other robust estimates in the literature in a simulation study,the results show that the proposed method is more efficient.Finally,the proposed method was used to analyze CD4 cell data.Cross-validation results show that the proposed method is more reliable.
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.199.13