一种多算法融合的人脸识别方法研究  被引量:11

Research on a face recognition method based on multi-algorithms fusion

在线阅读下载全文

作  者:姚立平 潘中良[1] YAO Liping;PAN Zhong-liang(College of Physics and Telecommunications Engineering,South China Normal University,Guangzhou 510006,China)

机构地区:[1]华南师范大学物理与电信工程学院

出  处:《光电子.激光》2019年第9期960-967,共8页Journal of Optoelectronics·Laser

基  金:广州市科技计划项目(201904010107);广东省科技计划项目(2016B090918071)资助项目

摘  要:针对人脸识别技术易受光照、姿态、表情等影响,为了增强人脸识别算法的鲁棒性,提出首先采用LBP算法提取人脸图像的局部纹理特征,使用PCA算法将高维的空间人脸图像投影到低维的特征空间,使用LDA算法利用人脸类别标签信息寻找最优的投影向量,实现了人脸图像维度进一步地压缩,最后使用SVM分类器分类匹配得到识别结果。分别使用ORL和Yale人脸数据库验证了算法的有效性,实验结果表明,文中该方法具有良好的识别性能,与其它的识别算法相比,识别率有了较大的提高。Face recognition technology was vulnerable to illumination,posture,expression and other factors,in order to enhance the robustness of face recognition algorithm,LBP algorithm was used to extract local texture features of face images first,then PCA algorithm was used to project high-dimensional spatial face images into low dimensional feature space,using LDA algorithm to find the optimal projection vectors with face class label information,the dimension of image was further compressed.Finally,compared with other classical classifiers such as the K-Nearest Neighbor classifier,Bayes classifier,SVM classifier was used to get great recognition and classification results.ORL and Yale face databases were used to verify the effectiveness of the algorithm.In ORL,the recognition rate of the method PCA gets 77% only,PCA combined with LBP gets 83.0%,PCA combined with LDA gets 91.5%,the algorithm SRC based on sparse representation and dictionary learning gets 91.5%,and the proposed method gets 100%,which has been greatly improved compared with other recognition algorithms.In Yale,the recognition rate of the method PCA gets 74% only,PCA combined with LBP gets 87.9%,PCA combined with LDA gets 93.3%,the algorithm SRC based on sparse representation and dictionary learning gets 85.6%,and the proposed method gets 100%.The testing results illustrate that the proposed method has also great recognition performance in this database,which shows this method has feasibility and effectiveness.

关 键 词:人脸识别 LBP算法 PCA算法 LDA算法 SVM分类器 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象