检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:倪郁东[1] 费学芳 沈吟东[2] 李媛媛 宋阳琴 NI Yudong;FEI Xuefang;SHEN Yindong;LI Yuanyuan;SONG Yangqin(School of Mathematics, Hefei University of Technology, Hefei 230601, China;School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China)
机构地区:[1]合肥工业大学数学学院,安徽合肥230601 [2]华中科技大学人工智能与自动化学院,湖北武汉430074
出 处:《合肥工业大学学报(自然科学版)》2019年第10期1424-1430,共7页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(71571076)
摘 要:为了获取机器人全局最优路径,文章提出一种基于改进的狼群算法移动机器人路径规划。首先运用栅格法对机器人环境进行建模;然后提出一种改进的狼群算法,该算法提出并行游走机制,进一步提高探狼的局部搜索能力;构建智能奔袭行为,提高猛狼自适应调节能力;提出向心围攻策略,使得算法收敛到全局最优。6类测试函数的仿真结果表明,改进的算法在局部搜索能力和自适应调节能力更强、收敛精度更高、收敛速度更快。移动机器人路径规划的仿真实验所涉及到的参数较多,文章利用Taguchi方法的三因素三水平正交试验法选取了最佳的参数组合。最后将改进的狼群算法和狼群算法都进行路径规划的仿真实验,结果表明,改进的算法在解决机器人路径规划问题上更有效。In order to obtain the global optimal path of the robot, this paper proposes a path planning of mobile robot based on improved wolf pack algorithm. Firstly, the grid method is used to model the environment of robot. Then an improved wolf pack algorithm is put forward. In this algorithm, in order to further improve the local search ability of scout wolf, the parallel walk mechanism is proposed;in order to improve the adaptive adjustment ability of fierce wolf, the intelligent raid behavior is built;in order to converge to the global optimum, the centripetal siege strategy is put forward. Simulation results of six types of test functions show that the improved wolf pack algorithm has higher convergence accuracy, better search and adaptive adjustment abilities, and faster convergence speed. Many parameters involve in the centripetal simulation experiment of mobile robot path planning. The three-factor and three-level orthogonal experiment in Taguchi method is used to select the optimal parameter set. Finally, the improved wolf pack algorithm and the original wolf pack algorithm are used to do the path planning simulation experiment. The results show that the improved algorithm is more effective in solving the robot path planning problem.
关 键 词:路径规划 狼群算法 并行游走 智能奔袭 向心围攻
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28