基于笔划三维深度特征的签名识别  被引量:2

Signatures recognition based on strokes 3D depth feature

在线阅读下载全文

作  者:吴坤帅 魏仲慧[1] 何昕[1] 李佩君 WU Kun-shuai;WEI Zhong-hui;HE Xin;LI Pei-jun(Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences, Changchun 130033, China;University of Chinese Academy of Sciences, Beijing 100049, China;Unit 63850 of PLA, Baicheng 137000, China)

机构地区:[1]中国科学院长春光学精密机械与物理研究所,吉林长春130033 [2]中国科学院大学,北京100049 [3]中国人民解放军63850部队,吉林白城137000

出  处:《液晶与显示》2019年第10期1013-1020,共8页Chinese Journal of Liquid Crystals and Displays

基  金:吉林省科技发展项目计划(No.20180201013GX)~~

摘  要:针对熟练伪造签名识别正确率较低的问题,提出了基于笔划三维深度特征的个人签名识别方案。首先采集不同书写者的真实签名及他人的套摹签名,用高精度的体式显微镜分别对签名笔划进行扫描,获取签名笔划的表面三维点云数据。然后通过高斯滤波器滤掉三维点云数据中的噪声,计算签名笔划的平均深度、沿笔划方向深度标准差以及熵等统计特征。之后,对数据集进行数据增强,增加签名数据的数量。最后,将签名数据分为训练集和测试集,在不同训练比例下使用分类器(包括SVM、KNN、ANN)进行分类。实验结果显示,本文算法在本地签名数据集上的最佳识别正确率为98.69%,优于大多数传统算法,满足实际应用的要求。In order to solve the problem that the recognition rates of skilled forgery signatures is not satisfied,apersonal signatures recognition scheme based on 3D depth feature of strokes is proposed.Firstly,the real signatures of different writers and the skilled forgery signatures are collected by highprecision stereo microscope,obtaining the surface 3D point cloud data of the signature strokes.Secondly,after filtering the noise of cloud data through the Gaussian filter,the statistical features such as the average depth of the stroke,the standard deviation of the depth along the stroke direction,and the entropy are calculated.To increase the number of data sets,data augmentation is implemented.Finally,the data set is divided into training set and test set,using classifier(including SVM,KNN,ANN)to classify the data set under different training ratios.The experimental results show that the best recognition accuracy of the algorithm on the local signature data set is 98.69%,which is better than most traditional algorithms and meets the requirements of practical applications.

关 键 词:签名识别 深度特征 三维图像处理 特征提取 数据增强 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象