一类波动方程有限元投影格式的误差分析  

ERROR ANALYSIS OF FINITE ELEMENT PROJECTION METHOD FOR A CLASS OF WAVE EQUATIONS

在线阅读下载全文

作  者:马昌凤[1] 梁国平[1] 刘韶鹏[1] 

机构地区:[1]中科院数学与系统科学研究院数学研究所

出  处:《计算数学》2002年第4期501-512,共12页Mathematica Numerica Sinica

摘  要:1.引言 本文考虑如下不含阻尼项的波动方程的有限元逼近:This paper provides an convergence analysis of a fractional-step projection method for a class of wave equations by means of finite element approximations. Error estimates in finite time are given. And it is verified that provided the time-stepsize St is sufficiently small, the proposed algorithm yields for finite time T an error of O(δt + hl+1) in the L2-norm for the vector value function u and an error of O(δt + hl) in the H1-norm(or in the Z2-norm for the scalar function φ) , where h is the mesh size and l is the polynomial degree of the approximate displacement. In addition, some numerical results are reported in the paper.

关 键 词:有限元逼近 投影方法 波动方程 误差估计 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象