检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马啸 邵利民[1] 金鑫[1] 徐冠雷[1] MA Xiao;SHAO Limin;JIN Xin;XU Guanlei(Department of Navigation,Dalian Naval Academy,Dalian 116018,China)
机构地区:[1]海军大连舰艇学院航海系
出 处:《电讯技术》2019年第8期869-874,共6页Telecommunication Engineering
基 金:国家自然科学基金资助项目(61471412,61771020)
摘 要:针对传统目标识别方法资源消耗大、精度和可靠性低、泛化能力不强的问题,提出了一种基于改进YOLO(You Only Look Once)模型的舰船目标识别方法。通过精简YOLO模型,设计了一个10层的卷积神经网络用于舰船目标的自动特征提取和分类识别,模型训练过程中引入迁移学习的概念防止模型过拟合并加速模型参数的训练。在自建舰船目标图像测试集上的实验分析结果表明,该方法能够正确识别出航母、除航母外的其余军舰及民船三类舰船目标,识别精度达到93.7%且识别效率较高,验证了所提舰船目标识别方法的有效性。For the problems of the traditional target recognition method,such as high resource consumption,low precision and reliability,poor generalization ability,a ship target recognition method based on convolutional neural network(CNN) is proposed.By simplifying the You Only Look Once(YOLO) model,a 10-layer CNN model is designed to extract the ship features and recognize different ship targets automatically.In the process of model training,the concept of transfer learning is introduced to prevent model overfitting and accelerate the training of model parameters.The results of experiment on the self-built ship target image testing set show that,this method can correctly recognize three types of ship targets,including the aircraft carriers,the remaining warships except the aircraft carriers,and the civilian ships.The recognition accuracy reaches 93.7 % and the recognition efficiency is high,which verifies the effectiveness of the proposed method.
分 类 号:TN95[电子电信—信号与信息处理] TP391.9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249