基于深度卷积神经网络的脑电信号情感识别  被引量:29

EEG-Based Emotion Recognition Using Deep Convolutional Neural Network

在线阅读下载全文

作  者:陈景霞[1,2] 王丽艳 贾小云 张鹏伟[1] CHEN Jingxia;WANG Liyan;JIA Xiaoyun;ZHANG Pengwei(School of Electrical and Information Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China;School of Computer Science and Engineering,Northwestern Polytechnical University,Xi’an 710072,China)

机构地区:[1]陕西科技大学电气与信息工程学院,西安710021 [2]西北工业大学计算机学院,西安710072

出  处:《计算机工程与应用》2019年第18期103-110,共8页Computer Engineering and Applications

基  金:国家自然科学基金(No.61806118,No.61806144)

摘  要:为了点对点自动学习脑电信号(Electroencephalogram,EEG)空间与时间维度上的情感相关特征,提高脑电信号情感识别的准确率,基于DEAP数据集中EEG信号的时域、频域特征及其组合特征,提出一种基于卷积神经网络(Convolution Neural Network,CNN)模型的EEG情感特征学习与分类算法。采用包括集成决策树、支持向量机、线性判别分析和贝叶斯线性判别分析算法在内的浅层机器学习模型与CNN深度学习模型对DEAP数据集进行效价和唤醒度两个维度上的情感分类实验。实验结果表明,在效价和唤醒度两个维度上,深度CNN模型在时域和频域组合特征上均取得了目前最好的两类识别性能,在效价维度上比最佳的传统分类器集成决策树模型提高了3.58%,在唤醒度上比集成决策树模型的最好性能提高了3.29%。In order to improve the accuracy of emotional recognition by end-to-end automatic learning of emotional features in spatial and temporal dimensions of electroencephalogram(EEG),an EEG emotional feature learning and classification method using deep Convolution Neural Network(CNN)models is proposed based on temporal features,frequential features and their combination features of EEG signals in DEAP dataset.The shallow machine learning models including Bagging Tree(BT),Support Vector Machine(SVM),Linear Discriminant Analysis(LDA)and Bayesian Linear Discriminant Analysis(BLDA)models and deep CNN models are used to make emotional binary classification experiments on DEAP datasets in valence and arousal dimensions.The experimental results show that the deep CNN models achieve the best recognition performance on temporal and frequency combined features in both valence and arousal dimensions,which is 3.58%higher than the performance of the best traditional BT classifier in valence dimension and 3.29%higher than that of BT classifier in arousal dimension.

关 键 词:脑电信号 卷积神经网络 深度学习 情感识别 组合特征 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象