基于KNN的中医胃疼病患者分类研究  被引量:1

The Research on Classification of Patients with Stomachache in Traditional Chinese Medicine Based on KNN

在线阅读下载全文

作  者:王景文 李伟[2] 李永彬 WANG Jing-wen;LI Wei;LI Yong-bin(International College,Tianjin University of Science&Technology,Tianjin 300222,China;School of computer Science and Information Engineering,Tianjin University of Science&Technology,Tianjin 300222,China;School of Medical Information Engineering,Zunyi Medical University,Zunyi 563003,China)

机构地区:[1]天津科大学国际学院,天津300222 [2]天津科技大学计算机科学与信息工程学院,天津300222 [3]遵义医科大学医学信息工程学院,贵州遵义563003

出  处:《电脑与信息技术》2019年第5期40-43,共4页Computer and Information Technology

摘  要:本文采用KNN算法实现对中医胃痛病的自动诊断。采集某医院中医科门诊胃疼病患者数据,用Excel文档存储,并对数据进行初始化处理,以便于编程实现;将整理后的数据分为训练数据和测试数据,采用归一化函数计算每条测试数据在训练数据中的症状符合度(SCR,Symptom coincidence rate),通过SCR和k值共同确定测试数据的证候分类。采用Python语言编程实现KNN算法,对测试数据进行了预测分类处理。结果表明,采用KNN算法对可以实现中医胃疼病患者症状数据进行自动分类,准确率高,该方法可以应用于中医疾病的自动诊断。KNN algorithm is used to solve the automatic diagnosis of stomachache in traditional Chinese medicine.The data of outpatients with stomachache in the department of traditional Chinese medicine in a hospital were collected and stored with Excel document.Those data were initialized and processed,so that the data could be processed by programming.The preprocessed data are divided into training data and test data,and the SCR(symptom coincidence rate)of each test data in training data is calculated by normalization function,and the syndrome classification of test data were determined by SCR and k-value.The KNN algorithm is implemented by Python,and the test data are predicted and classified.The result shows that KNN algorithm can be used to automatically classify the symptom data of patients with stomach pain in traditional Chinese medicine(TCM),and the accuracy is high.This method can be applied to the automatic diagnosis of TCM diseases.

关 键 词:KNN 疾病预测 中医胃痛病 中医证候 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象