基于服装图像视觉特征的冷启动问题缓解  被引量:1

Mitigation of Cold-Start Problem Based on Visual Features of Clothing Images

在线阅读下载全文

作  者:贺宇 史有群[1] 陶然 罗辛[1] He Yu;Shi Youqun;Tao Ran;Luo Xin(School of Computer Science and Technology,Donghua University,Shanghai 201600,China)

机构地区:[1]东华大学计算机科学与技术学院

出  处:《南京师范大学学报(工程技术版)》2019年第3期15-20,共6页Journal of Nanjing Normal University(Engineering and Technology Edition)

基  金:广东省协同创新与平台环境建设专项基金(2014B090908004);东莞市专业镇创新服务平台建设项目

摘  要:冷启动问题是协同过滤推荐算法中被广泛关注的问题,它的存在严重影响协同过滤算法的推荐质量.提出深度卷积神经网络提取的服装商品图像视觉特征用于计算用户对新商品喜好度的方法来缓解冷启动问题,并利用矩阵分解模型估算用户对服装商品的评分.通过从服装商品图像视觉特征到商品特征向量的映射函数计算新商品的特征向量,给出了两种映射函数形式:K最近邻映射和线性映射.实验结果表明,服装图像视觉特征能够有效缓解协同过滤算法冷启动问题.The cold-start problem is a classic problem which has widely been concerned in the collaborative filtering recommendation algorithm.The problem seriously affects the recommendation quality of the collaborative filtering algorithm.This paper proposes a way to alleviate the cold-start problem by using the visual feature of the clothing product image learned by the deep convolutional neural network.The paper uses the matrix factorization model to estimate the users’score on clothing items.In this paper,the items feature vector is calculated by a mapping function from the clothing product image visual feature to the items feature vector.The paper mentions two forms of mapping functions:K nearest neighbor mapping and linear mapping.The experimental results show that the visual feature of clothing image can effectively alleviate the cold-start problem of collaborative filtering algorithm.

关 键 词:协同过滤 矩阵分解 冷启动 图像视觉特征 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象