检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:葛艳[1] 刘杏杏 谢俊标 GE Yan;LIU Xingxing;XIE Junbiao(Institute of Information Science and Technology,Qingdao University of Science and Technology,Qingdao,Shandong 266061,China)
机构地区:[1]青岛科技大学信息科学技术学院
出 处:《中国科技论文》2019年第7期773-777,788,共6页China Sciencepaper
基 金:国家自然科学基金资助项目(61273180);山东省高等学校科技计划项目(J14LN74)
摘 要:针对轮毂识别系统前期图像特征提取误差较大时分类准确性降低的问题,提出了基于改进粒子群算法优化BP神经网络的轮毂识别模型。在标准粒子群中引入遗传算法的变异因子、惯性权重、时间因子、速度边界限制和反弹策略,以改进粒子群算法,从而提高寻找最优阈值与权值的性能。经过与不同算法的对比数据看出,采用改进粒子群优化BP神经网络算法的分类识别率比其他算法提高了9%左右,且收敛速度、收敛精度均有提高,证明了所提IPSO(improved particle swarm optimization)算法的有效性。For the problem that the low classification accuracy caused by image feature extraction with large error in the hub recognition system,a hub recognition model based on the BP neural network optimized by modified PSO is proposed.Variation factor related to the genetic algorithm,inertia weight,velocity boundary limit,bounce strategy and time factor are introduced into the standard particle swarm to improve the particle swarm optimization algorithm,further improving the efficiency to find the optimal threshold and weight.The data of experiments and comparisons show that the classification accuracy of BP neural network optimized by modified PSO is about 9%higher than other algorithms.The convergence speed and precision are improved,which proves that the improved particle swarm optimization(IPSO)algorithm is effective.
关 键 词:粒子群改进算法 BP神经网络 轮毂识别分类 特征提取
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15