检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉理工大学理学院 [2]武汉谱数科技有限公司,武汉430070
出 处:《统计与决策》2019年第21期160-164,共5页Statistics & Decision
基 金:国家自然科学基金资助项目(71473186);中央高校基本科研业务费专项资金资助项目(2018IB016)
摘 要:文章提出了采用支持向量机(SVM)和改进的长短期记忆网络(LSTM)与Lasso方法相结合的两个投资组合模型。选取技术指标作为模型的输入变量,使用改进的网格搜索法和指数衰减法分别改进SVM和LSTM。再通过这两种算法对HS300中所有股票进行涨跌预测,并统计预测为上涨的股票,最后基于变量选择观点的Lasso方法对预测上涨的股票进行筛选和权重计算,构建GSVM-L和ELSTM-L投资组合模型。结果表明:相对于其他组合模型,该模型具有较好的投资收益和较强的抗风险能力,且ELSTM-L模型可以容忍更高的交易成本。
关 键 词:指数衰减 SVM LSTM Lasso方法 投资组合
分 类 号:F830.9[经济管理—金融学] TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38