检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭琨 王雪[1,2] 杜培军[3] Tan Kun;Wang Xue;Du Peijun(Key Laboratory of Crographir Infinmaiian Scierur,MiniMry of Eduraiwn,East China Normal Univeniiy,Shanghai 200241,China;Key Laboratory for Ixmd Environment and Disaster Moniloring of Ministry of Natural Resourcrs,China Univeniiy of Mining and Technology,Xuzhou 221116,Chino;Key Laboraiory far Sairllut Mapping Technology and Applications cf Ministry of Natural Resources,Nanjing University,Nanjing 2100237 China)
机构地区:[1]华东师范大学地理信息科学教育部重点实验室,上海200241 [2]中国矿业大学自然资源部国土环境与灾害监测重点实验室,徐州221116 [3]南京大学自然资源部卫星测绘技术与应用重点实验室,南京210023
出 处:《中国图象图形学报》2019年第11期1823-1841,共19页Journal of Image and Graphics
摘 要:本文以结合深度学习的遥感影像特征提取和不充足样本下地物识别与分类作为出发点,对2017-2019年用于遥感图像处理中小样本训练的深度学习方法进行归类总结,介绍如何结合深度学习技术解决遥感影像在样本不充分情况下的有效训练问题,从深度生成模型、迁移学习以及一些高效特征提取网络3个方面进行全面剖析。首先,探讨了以GAN(generative adversarial network)和VAE(variational autoencoder)及其衍生结构在遥感技术中分类、变化检测上的应用;然后,在基于知识复用的辅助训练策略--迁移学习中主要从基于网络的迁移和基于数据结构的迁移两大类应用展开讨论;最后探讨了结合半监督学习和主动学习等思想的深度学习算法以及一些新颖的网络结构的应用。虽然深度学习在遥感技术领域发挥了极大的优势,性能也普遍超过了浅层的学习器,但结合物理模型的分析和高性能的实用性遥感应用仍需进一步发展与研究。Remote sensing image,which is an important data source in spatial analysis,records both spectral and spatial information of the scene. Therefore,it is widely utilized in areas such as terrain classification,change detection and object identification etc.. Classification is the most primary problem of remote sensing applications while the issues of large date redundancy and small training set are still the barrier of its widespread application and development. Deep learning is one kind of representational learning,which has led to significant advances in imaging technology. Traditional pattern recognition algorithm always be the thought of a strategy of"divide and conquer",which tends to be divided into feature extraction and feature selection,classifier design processes. Although this solution idea can decompose the problem into several controllable subproblems,at the same time,the optimum solution of these subproblems cannot converge to the global optimum,and even the best feature extraction methods cannot make sure the classification of boundary is prefect. Comparing with the hand-crafted feature extraction methods,the end-to-end optimization pattern of deep learning has brought a superior performance for the remote sensing classification. Unfortunately,deep learning usually requires big data,with respect to both volume and variety,while most remote sensing applications only have limited training data,of which a small subset is labeled. Herein,we provide the most comprehensive survey of state-of-the-art approaches in deep learning to combat this challenge over recent one or two years,and to enable researchers to explore its theory and development. This paper summarizes three kinds of methods to train the deep model under limited training data. The first topic is deep generative model,in which we explore the applications of the generative adversarial networks( GAN),variation autoencoders( VAE) and their derived structures in remote sensing classification and change detection,and the application fields,applicable
关 键 词:遥感影像分类 深度学习 深度生成模型 半监督学习 迁移学习
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222