基于电子鼻技术多花黄精药材的鉴别研究  被引量:10

Study on Identification of Polygonatum cyrtonema Based on Electronic Nose Technology

在线阅读下载全文

作  者:方文韬 赵丽蓉 张虹[1,2] 罗汉 孙慧娟[1] 方成武 刘守金[1,2] 李雷 FANG Wen-tao;ZHAO Li-rong;ZHANG Hong;LUO Han;SUN Hui-juan;FANG Cheng-wu;LIU Shou-jin;LI Lei(Anhui University of Chinese Medicine,Hefei Anhui 230012;Institute of Conservation and Development of Traditional Chinese Medicine Resources,Anhui Academy of Traditional Chinese Medicine;Anhui Senfeng Agricultural Comprehensive Development Co.,Ltd.)

机构地区:[1]安徽中医药大学,安徽合肥230012 [2]安徽省中医院科学院中药资源保护与开发研究所 [3]安徽森沣农业综合开发有限公司

出  处:《现代农业科技》2019年第22期41-43,45,共4页Modern Agricultural Science and Technology

基  金:国家重点研发计划(2017YFC1701606)

摘  要:为了建立基于电子鼻技术对多花黄精不同产地、不同生长年限及不同加工方法的药材的鉴别方法,本文通过电子鼻技术检测多花黄精不同药材样品的气味在传感器上的响应值,应用主成分分析(PCA)和LDA线形判别分析对特征数据进行统计学分析。结果表明,电子鼻检测不同产地、不同生长年限及不同加工方法的多花黄精药材的响应值有差异,气味有差异,PCA、LDA及雷达图分析均能判别。由此表明,电子鼻检测结合判别模式为多花黄精不同产地、不同加工方法和不同生长年限的药材提供了有效、客观和简便的定性鉴别技术。In order to establish a method for the identification of Polygonatum cyrtonema from different habitats,different growth years and different processing methods based on electronic nose technology,the odor response values of different samples of Polygonatum cyrtonema on sensors were detected by electronic nose technology.The characteristic data were analyzed by principal component analysis(PCA)and linear discriminant analysis(LDA).Results showed that the response values and odors of Polygonatum cyrtonema from different habitats,different growth years and different processing methods were different by electronic nose detection.These samples could be identified by PCA,LDA and radar analysis.In conclusion,it is an effective,objective and simple qualitative identification technology that the method of electronic nose detection combined with discriminant model was applied to the identification of Polygonatum cyrtonema from different habitats,different processing methods and different growth years.

关 键 词:多花黄精 电子鼻 主成分分析 线性判别分析 产地加工 

分 类 号:S567.239[农业科学—中草药栽培]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象