检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于彩敏[1] 程准[2] YU Caimin;CHENG Zhun(School of Mechanical and Electrical Engineering,Sanjiang University,Nanjing Jiangsu 210012,China;College of Engineering,Nanjing Agricultural University,Nanjing Jiangsu 210031,China)
机构地区:[1]三江学院机械与电气工程学院,江苏南京210012 [2]南京农业大学工学院,江苏南京210031
出 处:《机床与液压》2019年第21期91-94,共4页Machine Tool & Hydraulics
基 金:江苏省高校自然科学基金面上项目(14KJB460022)
摘 要:针对液压机械无级变速器(HMCVT)中电磁阀-湿式离合器-压力传感器组成的系统,为较精确地建立带有压力传感器系统的动态响应模型,并且提高在特定工况下压力传感器的标定精度,分别基于改进的模拟退火(SA)算法和径向基函数神经网络(RBF-NN)提出对该系统进行辨识以及压力传感器精确标定的方法。试验结果表明:该系统的动态响应与二阶系统响应相吻合,其固有频率为13.12 Hz,阻尼比系数为0.38,系统灵敏度为0.45;系统辨识精度较高,平均误差仅为0.07;利用零点处的测量数据,仅需2个工况下的样本作为训练样本,并结合RBF-NN能很好地对输入阶跃信号的压力传感器进行精确标定。Aiming at the system composed of solenoid valve,wet clutch and pressure sensor in hydro-mechanical continuously variable transmission(HMCVT),in order to establish the dynamic response model of the pressure sensor system more accurately,and to improve the calibration accuracy of the pressure sensor under specific operating conditions,based on the improved simulated annealing(SA)algorithm and the radial basis function neural network(RBF-NNN),the methods to identify the system and calibrate the pressure sensor are proposed.The experimental results show that the dynamic response of the system is consistent with that of the second order system.The natural frequency is 13.12 Hz,the damping ratio is 0.38,and the system sensitivity is 0.45.The identification accuracy of the system is high,and the average error is only 0.07.According to the measurement data at the zero point,only the samples under 2 working conditions are needed as the training sample,and the pressure sensor under the input step signal condition can be calibrated accurately with the RBF-NN.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.163.51