检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郝碧君 陈妮 李亮[1] 郭月龙 何宁[1] Hao Bijun;Chen Ni;Li Liang;Guo Yuelong;He Ning(School of Mechatronic Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing 210016,China)
机构地区:[1]南京航空航天大学
出 处:《工具技术》2019年第12期3-9,共7页Tool Engineering
基 金:国家自然科学基金(51575268);江苏省自然科学基金青年项目(BK20180435)
摘 要:为了有效地识别钻削刀具磨损状态,提出一种基于小波包分析和最小二乘支持向量机(LS-SVM)的状态识别方法。通过在线监测钻削加工过程中的钻削轴向力和刀具状态,采用时域分析、频域分析以及小波包分析法对刀具磨损状态的信号进行特征向量提取,建立基于最小二乘支持向量机(LS-SVM)的分类识别模型。通过试验验证了该方法可以提高刀具磨损状态的识别精度。In order to identify the wear condition of the drilling tools effectively,this paper presents the condition recognition method based on the wavelet packet analysis and least squares support vector machine(LS-SVM).This method monitored the axial drilling forces and tool condition during the drilling process,and used the time domain analysis,frequency domain analysis and wavelet packet analysis method to extract the signal features.The signal features which are extracted could reflect the wear condition of the tool as much as possible are deemed as feature vectors.A classification recognition model based on LS-SVM is established to improve the accuracy of the tool condition recognition model.The experimental results show that this method could improve the recognition accuracy of tool wear condition.
关 键 词:刀具状态识别 特征提取 小波包分析 最小二乘支持向量机
分 类 号:TG713.1[金属学及工艺—刀具与模具] TH117.1[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33