检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:裴乐 刘群[1] 舒航 PEI Le;LIU Qun;SHU Hang(Chongqing Key Laboratory of Computational Intelligence,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)
出 处:《重庆邮电大学学报(自然科学版)》2019年第6期849-860,共12页Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基 金:国家重点研究发展计划(涉密项目(2016QY01W0200));国家自然科学基金(61572091);重庆市产业类重点主题专项(cstc2017zdcy-zdyfx0091);重庆市人工智能技术创新重大主题专项重点研发项目(cstc2017rgzn-zdyfx0022)~~
摘 要:对于数据流的处理,多任务多核学习已逐渐成为在线学习算法研究的热点,它在一定程度上可提高数据流预测的准确性.多核方法尽可能使用最少的核函数得到最好的实验效果,当数据量增大、训练模型稳定时,通过阈值限定的方法对核函数进行遗忘,从而减少基本核函数的使用个数,使得计算更加简单;对于算法的优化,通过引入一个遗忘变量,从对偶的角度来进一步优化权重更新过程,这里的权重指多个任务的共有特征权重和每个任务间的特有权重,以提高算法的收敛速度.实验部分对核函数的选取进行了较为详细的分析,通过对UCI数据集和实际的机场客流量数据集进行分析,证明该本算法的合理性和高效性.For data stream processing multi task and multi kernel learning has gradually become the focus of online learn ing algorithm.It can improve the accuracy of data flow prediction to a certain extent.The multi kernel method uses as few kernels as possible to obtain the best experimental results:When the amount of data increases and the training model con verges the kernel functions will be forgotten by introducing a threshold Thereby reducing the number of kernel functions can make the calculation simpler.In addition in order to improve the convergent speed a forgetting variable is introduced to optimize the weight update process through solving the dual problem to further optimize in which the weights are defined for common features of multi tasks and special features of each task.In the experiments the selection and analysis on ker nel functions are carried out in detail.Using the UCI data and the actual airport passenger traffic data it verifies the best performance and reasonability of the algorithm put forward in this paper.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74