检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任咏红[1] 齐爽 任健盛 陈畅 REN Yonghong;QI Shuang;REN Jiansheng;CHEN Chang(School of Mathematics,Liaoning Normal University,Dalian 116029,China)
机构地区:[1]辽宁师范大学数学学院
出 处:《辽宁师范大学学报(自然科学版)》2019年第4期433-438,共6页Journal of Liaoning Normal University:Natural Science Edition
基 金:国家自然科学基金资助项目(11671184);辽宁省教育厅科学研究一般项目(LJ2019005)
摘 要:两阶段随机二阶锥规划模型在工程和生产等许多实际问题中有广泛的应用,该模型的有效求解方法备受关注.最优性条件在算法设计中扮演着重要的角色.基于Lagrange对偶理论,主要探讨具有离散分布的两阶段随机二阶锥规划问题的最优性条件.在Slater条件下,建立了第二阶段问题的对偶问题并分析了最优值函数的次微分性质;当随机数据服从离散分布时,证明了两阶段随机二阶锥规划问题的最优性条件.The two-stage stochastic second-order cone programming model has been widely used in many practical problems such as engineering and production. The effective methods for solving this model have attracted much attention. It is well known that optimality conditions play an important role in algorithm design. Based on Lagrange duality theory, the optimality condition for two-stage stochastic second-order cone programming problem with discrete distribution are dicussed. Under the Slater condition, the dual problem of the second-stage problem is established and the subdifferential property of the optimal value function is analyzed.When the random data obey the discrete distribution, the optimality condition of the two-stage stochastic second-order cone programming problem is proved.
关 键 词:两阶段随机二阶锥规划 对偶问题 最优值函数 最优性条件 离散分布
分 类 号:O221.5[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38