分数阶常微分方程的改进精细积分法  被引量:4

An Improved Precise Integration Method for Fractional Ordinary Differential Equations

在线阅读下载全文

作  者:鲍四元[1,2] 沈峰 BAO Siyuan;SHEN Feng(Key Laboratory of Structural Engineering of Jiangsu Province,Suzhou University of Science and Technology,Suzhou,Jiangsu 215011,P.R.China;Department of Engineering Mechanics,School of Civil Engineering,Suzhou University of Science and Technology,Suzhou,Jiangsu 215011,P.R.China)

机构地区:[1]苏州科技大学江苏省结构工程重点实验室,江苏苏州215011 [2]苏州科技大学土木工程学院工程力学系,江苏苏州215011

出  处:《应用数学和力学》2019年第12期1309-1320,共12页Applied Mathematics and Mechanics

基  金:国家自然科学基金(11202146;51709194)~~

摘  要:基于Mittag-Leffler函数的定义式,构造Mittag-Leffler矩阵函数的精细迭代计算格式.与常规指数函数的迭代格式相比,迭代递推中多了修正项,其表达式与分数阶导数的阶次有关.对于以Caputo分数导数定义的动力学分数阶常微分方程,使用基于Mittag-Leffler函数的精细积分法可计算方程解在各时间段端点对应函数值.算例表明了所提计算方法的有效性,其精度可由所增加修正项的阶次控制.Based on the definition of the Mittag⁃Leffler function,the precise iteration computa⁃tion scheme for the Mittag⁃Leffler matrix function was constructed.Compared with the normal iteration scheme for exponential functions,the constructed scheme has additional correction i⁃tems.The expression of the correction item is related to the order of the fractional derivative.For dynamic fractional ordinary differential equation D(α)v=Hv with the Caputo fractional defi⁃nition,the solution function value at the endpoint of the time phase can be obtained with the precise iteration method.The numerical examples demonstrated effectiveness and efficiency of the presented method.

关 键 词:Mittag-Leffler函数 精细迭代格式 修正项 分数阶常微分方程 CAPUTO分数阶导数 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象