结合级联卷积目标检测和跟踪的快速人头检测  被引量:2

Fast head detection combined with cascaded convolution object detection and tracking

在线阅读下载全文

作  者:曾兵 李小霞[1,2] 王学渊 ZENG Bing;LI Xiaoxia;WANG Xueyuan(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China;Robot Technology Used for Special Environment Key Laboratory of Sichuan Province,Mianyang 621010,China)

机构地区:[1]西南科技大学信息工程学院,四川绵阳621010 [2]特殊环境机器人技术四川省重点实验室,四川绵阳621010

出  处:《传感器与微系统》2020年第1期109-112,116,共5页Transducer and Microsystem Technologies

基  金:国家自然科学基金资助项目(61771411,51475453,11472297)

摘  要:针对图像序列中遮挡和角度变化等因素易造成人头漏检的情况,提出一种结合级联卷积目标检测模型MTCNN和核相关滤波(KCF)跟踪模型的快速人头检测方法,即MT-KCF人头检测模型。利用批次归一化改进MTCNN网络,采用级联的方式检测人头;将检测到的人头位置信息输入到KCF跟踪模型中,对人头目标进行快速稳定的跟踪;为确保持续稳定地检测到人头,在跟踪多帧后,再次利用检测模型重新对人头进行检测。实验结果表明:MT-KCF模型在图像序列中具有较高的检测精度和较快的检测速度,平均准确率为94.85%,在640×480大小的图像序列中平均速度为108帧/s。Aiming at the situation that factors such as occlusion and angle change in image sequences are easy to cause head to miss the detection,a fast human head detection method is proposed which combined the cascade convolution object detection model MTCNN and kernel correlation filtering(KCF)tracking model,namely MT-KCF head detection model.Firstly,the batch normalization is used to improve the MTCNN network,and the human head is detected by cascading.Secondly,the detected human head coordinate information is input into the KCF tracking model,and the head object is quickly and steadily tracked.Finally,to ensure that the human head is detected continuously and steadily,the human head is detected again using the detection model after tracking several frames.Experimental results show that the MT-KCF model has higher detection precision and faster detection speed in image sequences,and the average accuracy is 94.85%.The average speed in the 640×480 image sequences is 108 frames per second respectively.

关 键 词:人头检测 级联网络 核相关滤波 卷积神经网络 跟踪 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象