基于路面识别的复合制动与ABS集成控制策略  被引量:11

Integrated control strategy of combined braking system and ABS based on road identification

在线阅读下载全文

作  者:何仁[1] 李梦琪[1] HE Ren;LI Mengqi(School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China)

机构地区:[1]江苏大学汽车与交通工程学院

出  处:《江苏大学学报(自然科学版)》2020年第1期20-26,共7页Journal of Jiangsu University:Natural Science Edition

基  金:国家自然科学基金资助项目(51275212)

摘  要:为了使电动汽车在制动时既能充分回收制动能量,又能兼顾制动稳定性,针对四轮轮毂电动机驱动电动汽车,提出了一种基于路面识别的复合制动与ABS集成控制策略.以单轮制动模型为研究对象,利用Lagrange插值法估算当前路面的峰值附着系数和最优滑移率;通过比较目标制动强度与峰值附着系数,将制动工况分为常规制动和防抱死制动;针对常规制动向防抱死制动过渡的工况,通过一种在ABS触发前合理减少再生制动的方法,避免直接撤销再生制动带来的ABS频繁退出和启动.在MATLAB/Simulink环境下建立了仿真模型,仿真结果表明:路面识别算法识别准确度较高;复合制动与ABS集成控制策略能够合理地分配再生制动力与液压制动力,实现车轮的防抱死控制.To recover braking energy and ensure braking stability,a integrated control strategy of combined braking system and anti-lock brake system(ABS)was proposed based on road identification for the electric vehicle with four in-wheel motors.Taking the single-wheel brake model as research object,the peak adhesive coefficient and the optimal slip rate of the current road were estimated by the Lagrange interpolation method.The braking conditions were divided into conventional brake and anti-lock brake by comparing the target braking severity and the peak adhesive coefficient.For the transition from conventional brake to anti-lock brake,the reasonable reducing regenerative braking before ABS triggering was adopted to avoid frequent withdrawal and start-up of ABS caused by direct withdrawing regenerative braking.The simulation models were established in MATLAB/Simulink.The results show that the accuracy of road identification strategy is satisfactory.The integrated control strategy can distribute regenerative power and hydraulic power reasonably and realize the anti-lock brake control of wheel.

关 键 词:汽车工程 复合制动 路面识别 再生制动 制动防抱死系统 

分 类 号:U462.3[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象