检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗新 王利萍 代佳华 魏玉丽 LUO Xin;WANG Liping;DAI Jiahua;WEI Yuli(School of Science,Beijing University of Civil Engineering and Architecture,Beijing 100044)
机构地区:[1]北京建筑大学理学院
出 处:《北京建筑大学学报》2019年第4期51-58,共8页Journal of Beijing University of Civil Engineering and Architecture
基 金:北京市教育委员会科技发展计划项目(KM201710016011);北京市委组织部“高创计划”青年拔尖人才培养计划项目(21351918007)
摘 要:Kazhdan-Lusztig(以下简称“K-L”)多项式是K-L理论中一个核心的研究对象,当考虑Weyl群或者仿射Weyl群时,它们的K-L多项式的首项系数对理解全部的K-L多项式起着关键的作用,同时在表示理论及李理论中也有深刻的意义.然而,关于这些K-L多项式的首项系数研究结果并不多.为了研究仿射Weyl群W-图的非局部有限性,Lusztig引入了与K-L多项式的首项系数μ(y,w)相关的一些半线性方程,这些半线性方程对于求解首项系数起着重要作用.在此主要借助半线性方程这一有力工具,来计算A3型仿射Weyl群的K-L多项式的部分首项系数.The Kazhdan-Lusztig(abbreviated as“K-L”)polynomial is a core research object in K-L theory.When Weyl groups or affine Weyl groups are considered,the leading coefficients of their K-L polynomials play a key role in understanding all K-L polynomials.At the same time,they are also profound in representation theory and Lie theory.However,for the leading coefficients of the K-L polynomials,the results of the study are sporadic.In order to study the nonlocal finiteness of W-graphs in affine Weyl groups,some semi-linear equations related to the leading coefficientsμ(y,w)of the K-L polynomials are introduced by Lusztig.They play an important role in solving the leading coefficients.In this paper,for the K-L polynomials of A3 affine Weyl groups,the powerful tool of semi-linear equation is used to calculate some of the leading coefficients.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249