汽车车内噪声主动控制变步长NFB-LMS算法  被引量:5

A variable step-size NFB-LMS algorithm for active vehicle interior noise control

在线阅读下载全文

作  者:张帅[1] 王岩松[1] 张心光[1] ZHANG Shuai;WANG Yan-song;ZHANG Xin-guang(Automotive Engineering College,Shanghai University of Engineering Science,Shanghai 201620,China)

机构地区:[1]上海工程技术大学汽车工程学院

出  处:《声学技术》2019年第6期680-685,共6页Technical Acoustics

基  金:国家自然科学基金项目(51675324);上海汽车工业科技发展基金(1523)

摘  要:为规避最小均方(Least Mean Square,LMS)算法不能同时提高收敛速度和降低稳态误差的固有缺陷,以及已有变步长LMS算法存在收敛速度慢和稳态误差估计精度差的问题,文中提出了一种基于变步长归一化频域块(Normalized Frequency-domain Block,NFB)LMS算法的汽车车内噪声主动控制方法。为了比较,应用传统的LMS算法、基于反正切函数的变步长LMS算法和变步长NFB-LMS算法分别进行实测汽车车内噪声的主动控制。结果表明,与其他两个算法相比,变步长NFB-LMS算法的收敛速度提高了70%以上,稳态误差减小了90%以上。变步长NFB-LMS算法在处理车内噪声信号时具有很高的效率,为进行汽车车内噪声主动控制提供了一种新方法。The LMS algorithm has an inherent shortcoming that the convergence speed can not be increased simultaneously with reducing the steady-state error.For the existing variable step-size LMS algorithm the convergence rate is low and the accuracy of estimating steady-state residual error is poor.To avoid such disadvantages,an active control method of vehicle interior noise based on variable step-size NFB-LMS algorithm is presented in this paper.The traditional LMS algorithm,the variable step-size LMS algorithm based on arctangent function and the variable step-size NFB-LMS algorithm are respectively applied to the active control experiments of the measured vehicle interior noise for comparison.The results show that the convergence speed of the variable step-size NFB-LMS algorithm is increased by 70%and the steady-state error is reduced by more than 90%,compared with the other two algorithms.Therefore,the variable step-size NFB-LMS algorithm has high efficiency in processing the vehicle interior noise signals,and provides a new method for active control of vehicle interior noise.

关 键 词:汽车内部噪声 主动噪声控制 变步长NFB-LMS算法 算法收敛速度 稳态误差 

分 类 号:U467.493[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象