检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付倩倩 陈胜泉 汪赳羚 FU Qian-qian;CHEN Sheng-quan;WANG Jiu-ling(Maintenance Company,State Grid Hubei Electric Power Co.Ltd.,Xiangyang 441000,China;China Railway Guangzhou Bureau Group Co.Ltd.,Guangzhou 510088,China)
机构地区:[1]国网湖北省电力有限公司检修公司,湖北襄阳441000 [2]中国铁路广州局集团有限公司,广东广州510088
出 处:《电力科学与技术学报》2019年第4期184-188,共5页Journal of Electric Power Science And Technology
摘 要:针对均匀有损传输线系统瞬态响应的数值计算,提出一种基于2阶或4阶经典帕德逼近的数值计算方法。在利用有限差分对电报方程的空间坐标进行离散化的基础上,通过2阶或4阶经典帕德逼近方法求解离散后的一阶常系数线性微分方程,从而得到各空间离散点处的时域数值解。数值仿真算例表明:2阶经典帕德逼近方法与隐式梯形积分法以及4阶经典帕德逼近方法与4级4阶显式Runge-Kutta方法的仿真结果完全吻合,从而间接地验证该文方法的高精度和有效性。A numerical method based on the second order or fourth order classic Padé approximation is proposed for the numerical calculation of the transient response of the uniform and lossy transmission line system. On the basis of utilizing finite-difference methods to discretize space coordinates of the telegraph equation, the second order or fourth order classic Padé approximation method is used to solve the discrete first order constant coefficient differential equation. Then the time domain numerical solution values at each discrete point are obtained. The numerical simulation results show that the classic Padé approximation method, the implicit trapezoidal integral method and the fourth order classic Padé approximation method are comprehensively in accordance with the simulation results given by the 4 th order explicit Runge-Kutta method. Therefore it indirectly verifies the high accuracy and effectiveness of this method.
关 键 词:传输线系统 经典帕德逼近 电报方程 隐式梯形积分法 RUNGE-KUTTA方法
分 类 号:TM73[电气工程—电力系统及自动化] TN914.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.89.207