检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李红光[1] 郭英[1] 眭萍 齐子森[1] 苏令华[1] LI Hongguang;GUO Ying;SUI Ping;QI Zisen;SU Linghua(Information and Navigation College, Air Force Engineering University, Xi’an 710077, China)
机构地区:[1]空军工程大学信息与导航学院
出 处:《系统工程与电子技术》2020年第2期445-451,共7页Systems Engineering and Electronics
基 金:国家自然科学基金(61601500);全军研究生资助课题(JY2018C169)资助课题
摘 要:将高维特征用于跳频电台细微特征个体识别具有很大优势,为了增强对跳频电台的分类识别能力,需要增加特征类型和维数,提高特征集的表征能力,但同时会引入大量冗余特征,导致分类器计算时间过长,分类正确率降低。为了降低高维特征集维数,首先采用相关性快速过滤特征选择算法,删除高维特征集中的不相关冗余特征,得到最优特征集。然后利用经过参数优化的支持向量机(support vector machine,SVM)分类器进行训练分类。实验表明,所提算法能够对高维特征集进行合理的降维,提高了SVM的分类器的分类性能,在保证分类正确率的基础上,降低了运算量,提高了跳频电台细微特征识别的时效性。The high dimensional feature is used for individual identification of the fine features of the frequency hopping station.In order to enhance the classification and recognition ability of the frequency hopping station,it is usually necessary to increase the feature type and feature dimension of the feature set to improve the representation ability.However,many redundant features are introduced.As a result,the calculation time of the classifier is too long,and the classification correctness rate is lowered.In order to reduce the dimension of high-dimensional feature sets,the feature selection algorithm is firstly used to delete the irrelevant redundant features in the high-dimensional feature set to obtain the optimal feature set.Then,the parameter-optimized support vector machine(SVM)classifier is used for training and classification.Experiments show that the proposed algorithm can reduce the dimensionality of high-dimensional feature sets and improve the classification performance of SVM.On the basis of ensuring the correctness rate of classification,the computational complexity is reduced,and the timeliness of fine feature recognition of frequency hopping stations is improved.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7