检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨予昊[1,2] 孙晶明[1,2] 虞盛康 YANG Yuhao;SUN Jingming;YU Shengkang(Nanjing Research Institute of Electronics Technology,Nanjing 210039,China;Key Laboratory of IntelliSense Technology,CETC,Nanjing 210039,China)
机构地区:[1]南京电子技术研究所,南京210039 [2]中国电子科技集团公司智能感知技术重点实验室,南京210039
出 处:《现代雷达》2019年第12期35-39,共5页Modern Radar
摘 要:飞机目标识别是地面情报系统的一项重要关键技术。近年来火热的深度学习方法,如卷积神经网络,展现出对于图像识别任务的优越性能。但是,训练卷积神经网络需要大量的带标签样本以估计规模庞大的模型参数,因而限制了其在雷达目标识别领域中的应用。针对飞机目标识别中的小样本问题,文中引入适用于有限数据场景的迁移学习技术,预先在其他大样本高分辨距离像数据上训练一个初始卷积神经网络模型,再结合当前飞机目标识别任务调优模型参数。在实测数据上的实验结果显示,与仅使用卷积神经网络的方法相比,所提方法可显著提升识别准确率,验证了方法的有效性。Aircraft target recognition is an important key technique of ground information systems.Recent hot deep learning methods,e.g.convolutional neural network,have shown superior performance for image recognition tasks.However,training a convolutional neural network requires a number of annotated samples to estimate numerous model parameters,which restricts its application to radar target recognition.Aiming at the small sample issue in aircraft target recognition,the transfer learning technique that suits the limited data is used in this study,combined with the advantages of convolutional neural network,an initial convolutional neural network has been trained in advance on big samples of radar high resolution range profiles,and then the model parameters are finetuned based on the current aircraft target recognition task.Experimental results of measured data show that compared to the results of merely applying convolutional neural networks,the proposed method can obviously increase the recognition accuracy rate,which validate the effectiveness of the proposed method.
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.156.43