检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋家良 罗勇[1] 何奕松 余行 傅玉川[1] JIANG Jialiang;LUO Yong;HE Yisong;YU Hang;FU Yuchuan(Department of Radiotherapy,West China Hospital,Sichuan University,Chengdu 610041,China)
机构地区:[1]四川大学华西医院放疗科
出 处:《中国医学物理学杂志》2020年第1期75-78,共4页Chinese Journal of Medical Physics
摘 要:目的:在卷积神经网络基础之上介绍一种特征区域再聚焦的勾画方法。方法:利用端到端的全卷积神经网络,采用正常勾画及特征区域再聚焦勾画两种方法分别对鼻咽癌肿瘤体积(GTVnx)进行自动勾画。选取60例鼻咽癌患者数据,其中40例用于训练,20例用于测试。Dice相似系数(DSC)用于评估自动勾画准确度。结果:正常勾画方法DSC为0.352±0.084,特征区域再聚焦方法DSC为0.524±0.079。对20例测试例勾画结果进行统计学检验结果显示P<0.01。结论:相比正常勾画方法,特征再聚焦勾画方法能够提高对GTVnx的勾画效果,提升较小靶区的勾画精度。Objective To propose a feature area refocusing method based on convolutional neural networks(CNN)for improving the accuracy of small target area segmentations.Methods End-to-end fully convolutional networks(FCN)was used to automatically segment nasopharynx gross tumor volume(GTVnx)by conventional segmentation method and feature area refocusing method.Sixty cases of nasopharyngeal carcinoma were analyzed in the study,with 40 cases for training and 20 cases for testing.Dice similarity coefficient(DSC)was used to evaluate the accuracy of automatic segmentation.Results The DSC obtained by conventional segmentation method was 0.352±0.084,lower than 0.524±0.079 which was obtained by feature area refocusing method.Statistical analysis of 20 test cases showed that the P value was less than 0.01.Conclusion Compared with conventional segmentation method,the feature area refocusing method for segmentation can achieve a better GTVnx segmentation result and improve the accuracy of small target area segmentation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222