检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕刚 张伟[1] LV Gang;ZHANG Wei(College of Computer Science and Information Engineering,Harbin Normal University,Harbin 150025,China)
出 处:《软件工程》2020年第2期5-8,共4页Software Engineering
摘 要:随着互联网上信息量呈指数增长,用户从大量信息中挑选目标信息变成了一种复杂且耗时的作业。为用户解决因信息量爆炸而不能快速获得目标信息的方法就是构建推荐系统。深度学习作为当前热门的研究话题,在许多领域都取得了突破性的成就。利用深度学习挖掘用户和物品的隐含属性,构建用户和物品的关系模型,可以提高个性化推荐的精确度。本文介绍了推荐系统和深度学习,分析了深度学习在推荐领域的应用现状并做出了展望。With the exponential growth of information on the Internet,it becomes a complicated and time-consuming task for users to select target information from a large amount of information.The way for users to solve the problem of not being able to quickly obtain target information due to the explosion of information is to construct Recommended system.As a hot research topic,researches of deep learning have made breakthrough achievements in many fields.Using deep learning to mine the hidden attributes of users and items,and building a relationship model between users and items can improve the accuracy of personalized recommendations.This paper introduces the recommendation system and deep learning,then analyzes the current status of application of deep learning in the recommendation field,and provides research prospects.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15