检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张楚婷 常亮[1] 王文凯 陈红亮 宾辰忠[2] ZHANG Chuting;CHANG Liang;WANG Wenkai;CHEN Hongliang;BIN Chenzhong(Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;National-Local Joint Engineering Research Center for Satellite Navigation Positioning and Location Service,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China)
机构地区:[1]桂林电子科技大学广西可信软件重点实验室,广西桂林541004 [2]桂林电子科技大学卫星导航定位与位置服务国家地方联合工程研究中心,广西桂林541004
出 处:《计算机工程》2020年第2期41-47,共7页Computer Engineering
基 金:国家自然科学基金(U1711263,U1811264);广西创新驱动发展专项(科技重大专项)(AA17202024)
摘 要:基于知识图谱的问答中问句侯选主实体筛选步骤繁琐,且现有多数模型忽略了问句与关系的细粒度相关性。针对该问题,构建基于BiLSTM-CRF的细粒度知识图谱问答模型,其中包括实体识别和关系预测2个部分。在实体识别部分,利用BiLSTM-CRF模型提高准确性,并将N-Gram算法与Levenshtein距离算法相结合用于候选主实体的筛选,简化候选主实体筛选过程。在关系预测部分,分别应用注意力机制和卷积神经网络从语义层次和词层次捕获问句与关系之间的相互联系。使用FreeBase中的FB2M和FB5M评估数据集进行实验,结果表明,与针对单一关系的问答方法相比,该模型对于实体关系对的预测准确率更高。Question answering over knowledge graph is complex in the filtering of candidate master entities of questions,and most existing models ignore the fine-grained correlation between questions and relationships.To address the problem,this paper proposes a fine-grained question answering model over knowledge graph based on BiLSTM-CRF.The model is divided into two parts:entity recognition and relationship prediction.In the entity recognition part,the model uses the BiLSTM-CRF algorithm to improve accuracy,and the N-Gram algorithm is combined with the Levenshtein Distance algorithm to simplify the filtering process of candidate master entities.In the relationship prediction part,attention mechanism and Convolutional Neural Network(CNN)are used to capture the correlation between questions and relationships at the semantic level and the word level.Experimental results on the FB2M and FB5M evaluation datasets in FreeBase show that the proposed model has higher accuracy of entity relationship pair prediction compared with existing question answering methods for a single relationship.
关 键 词:实体识别 关系预测 知识图谱 卷积神经网络 问答模型 N-Gram算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222