检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙为钊 周俊[1] SUN Wei-Zhao;ZHOU Jun(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学机械与汽车工程学院
出 处:《计算机系统应用》2020年第2期244-249,共6页Computer Systems & Applications
摘 要:为了减少磨削温度过高给零件带来热损伤等的负面影响,并提高零件产量、质量,本文建立了基于卷积神经网络的平面磨削温度预测模型.首先通过有限元仿真获得温度数据,并进行预处理,然后利用Google开源深度学习工具TensorFlow编写卷积神经网络程序,最后得到预测结果并与仿真值进行比较.结果表明,本文提出的基于卷积神经网络的磨削温度预测模型具有很强的学习能力以及非线性拟合能力,大大提高了磨削温度预测精度.In order to reduce the negative impact of excessive grinding temperature on the thermal damage of parts,and to improve the yield and quality of parts,this study establishes a surface grinding temperature prediction model based on convolutional neural network.Firstly,the temperature data is obtained through finite element simulation,and preprocessing is performed.Then,the convolutional neural network program is written by Google’s open-end learning tool TensorFlow,and finally the prediction result is obtained and compared with the simulation value.The results show that the grinding temperature prediction model based on convolutional neural network has strong learning ability and nonlinear fitting ability,which greatly improves the prediction accuracy of grinding temperature.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147