基于并行双模态模糊-PI补偿的多电机SMC控制  被引量:2

Multi-Motor Synchronous Control Based on Parallel Dual-Mode Fuzzy-PI Compensation

在线阅读下载全文

作  者:胡先锋 李雅梅[2] HU Xian-feng;LI Ya-mei(China Aerospace Science and Industry Nanjing Chenguang Group,Nangjing 210006,China;Faculty of Electrical and Control Engineering,Liaoning Technical University,Huludao 125105,China)

机构地区:[1]中国航天科工南京晨光集团,江苏南京210006 [2]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105

出  处:《测控技术》2020年第2期86-90,120,共6页Measurement & Control Technology

基  金:国家自然科学基金项目(71371091);辽宁省重点实验室项目(LJZS003)

摘  要:针对现有模糊-PI同步补偿器设计复杂且同步精度低等不足,提出将并行双模态模糊-PI控制算法应用到偏差耦合结构的新同步补偿策略。为了进一步提高电机间的同步与跟踪性能,采用了新型变指数趋近律的滑模控制器,在提高跟踪指令性能的同时,也提高了同步性能。仿真实验表明,与传统模糊-PI同步补偿器相比,双模模糊-PI补偿器在提高同步精度的同时也降低了设计难度,并且与改进的跟踪控制器相结合后系统的同步精度与跟踪性能都有了很大提高,验证了控制策略的有效性与可行性。In order to overcome the shortcomings of complicated design and low synchronization precision of the existing fuzzy-PI synchronous compensators,a new strategy of applying the parallel dual-mode fuzzy-PI control algorithm to the deviation coupling structure is proposed. In order to further improve the synchronization and tracking performance between motors and change the limitations of the synchronization strategy,a new sliding mode controller based on the variable index exponential law was applied. While improving the tracking command performance,the synchronization performance was also improved. Simulation results show that compared with the traditional fuzzy-PI synchronous compensator,the proposed dual-mode fuzzy-PI compensator improves the synchronization accuracy and reduces the design difficulty. Combined with the improved tracking controller,the synchronization accuracy and tracking performance of the system have been greatly improved, which verifies the effectiveness and feasibility of multi-motor control strategy.

关 键 词:偏差耦合结构 模糊-PI补偿 并行双模态模糊-PI补偿 跟踪控制器 

分 类 号:TM351[电气工程—电机] TP23[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象