检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毕林[1,2] 段长铭 任助理 BI Lin;DUAN Changming;REN Zhuli(School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China;Center of Digital Mine Research,Central South University,Changsha 410083,Hunan,China)
机构地区:[1]中南大学资源与安全工程学院,湖南长沙410083 [2]中南大学数字矿山研究中心,湖南长沙410083
出 处:《黄金科学技术》2020年第1期105-111,共7页Gold Science and Technology
基 金:国家自然科学基金项目“基于深度学习和距离场的复杂金属矿体三维建模技术研究”(编号:41572317)资助
摘 要:巷道边线是井下铲运机反应式导航系统中重要的感知信息。为了准确可靠地在井下环境中感知巷道边线,提出一种基于二维激光扫描信息和随机抽样一致性(RANSAC)的巷道边线检测算法。首先计算每个激光点的曲率,根据曲率阈值将激光点云划分为多个区域;然后基于RANSAC从每个区域提取直线,并根据铲运机航向角及巷道的设计标准进行筛选;最后合并筛选后的激光点云数据,使用RANSAC算法生成最终的巷道边线。基于地下矿山6种典型的巷道场景对算法效果进行验证,结果显示提取的巷道边线可靠度均达到96%以上,且算法具有很高的实时性和稳健性。Because the working environment of underground LHD(load-haul-and-dump-machine)is very bad,and with the increase of mining depth in underground mines,the realization of underground unmanned LHD is of great significance for ensuring the safety and health of workers and improving the production efficiency of mining enterprises.Navigation and positioning of LHD is one of the difficulties in the research of unmanned LHD.At present,the navigation technology of underground LHD mainly includes plan-based metric navigation and reactive navigation.The reactive navigation technology has the advantages of low cost and low computation.The former reactive navigation technology mainly relies on adding beacons manually,it has the shortcomings of high cost and poor adaptability.The roadway edge is an important natural beacon perception information,which has natural advantages compared with the artificial beacon.Foreign scholars had applied it to the reactive navigation system of underground LHD and achieved good navigation effect.However,they only did the research on the detection of the roadway edge in the straight roadway,no further discussion on the detection of roadway edge in more complex underground environments.Therefore,a more applicable roadway edge detection algorithm is proposed in this paper.This method is based on two-dimensional laser scanning information and random sampling consistency(RANSAC).The flow chart of the algorithm is as follows:Firstly,the curvature of each laser point in the laser point cloud is calculated,according to the curvature threshold,the laser point cloud data are divided into several regions.RANSAC algorithm is used to extract the roadway edges from each region.Then,the roadway edges are filtered according to the heading angle of the LHD and the design criteria of the roadway.Lastly,the laser point cloud data contained in the remaining roadway edges is merged,and the final roadway edges is generated by RANSAC algorithm again.This article simulated the laser data of six underground mine roadway
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249