检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王凤雨[1] Fengyu Wang
机构地区:[1]北京师范大学数学科学学院
出 处:《中国科学:数学》2020年第1期167-178,共12页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11771326和11431014)资助项目
摘 要:通常非对称Markov半群比相应的对称半群有更好的分析性质.例如, Wang (2017)给出一类超压缩(因此,在L2和相对熵下指数遍历)的非对称Markov半群,其对称半群甚至不遍历.本文讨论反方向的问题:在什么条件下,非对称Markov半群和相应的对称半群享有同等的性质.分别对于由Brown运动和Lévy跳过程驱动的随机微分方程,本文得到了非对称半群和对称半群在一些重要性质方面地位对等的充分必要条件,这些性质包括指数收敛性、一致可积性、H-超压缩性和S-超有界性.A non-symmetric Markov semigroup usually has better properties than the corresponding symmetric one. For example, Wang(2017) provides a class of non-symmetric Markov semigroups which are hypercontractive(and thus converge exponentially in both L2 and entropy), but the symmetric ones are even not ergodic. In this paper, we consider the inverse problem: search for reasonable conditions to ensure that a non-symmetric Markov semigroup and its symmetrization share the properties of exponential convergence, uniform integrability,hypercontractivity, and super boundedness. Since in the symmetric case these properties are precisely characterized by functional inequalities of the Dirichlet form, the key point of the study is to prove these inequalities for non-symmetric Markov processes. Stochastic differential equations driven by Brown motion or Lévy jump process are investigated.
关 键 词:非对称半群 泛函不等式 指数收敛性 一致可积性 超有界性
分 类 号:O211.63[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200