检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘娇 史国友[1,2] 杨学钱[1,2] 朱凯歌 LIU Jiao;SHI Guoyou;YANG Xueqian;ZHU Kaige(Navigation College,Dalian 116026,Liaoning,China;Key Laboratory of Navigation Safety Guarantee of Liaoning Province,Dalian 116026,Liaoning,China)
机构地区:[1]大连海事大学航海学院,辽宁大连116026 [2]大连海事大学辽宁省航海安全保障重点实验室,辽宁大连116026
出 处:《上海海事大学学报》2020年第1期34-39,115,共7页Journal of Shanghai Maritime University
基 金:国家自然科学基金(51579025);辽宁省自然科学基金(20170540090)
摘 要:为提高船舶航迹预测精度,解决准确建模难度大和神经网络易陷入局部最优的问题,考虑实时获取目标船AIS数据较少的特点,提出一种基于支持向量机(support vector machine,SVM)的航迹预测模型。选择AIS数据中的航速、航向和船舶经纬度作为样本特征变量;采用小波阈值去噪的方法处理训练数据;采用差分进化(differential evolution,DE)算法对模型内部参数寻优以提高模型收敛速度和预测精度。选取天津港实船某段航迹的AIS数据,比较基于DE-SVM与基于BP神经网络的航迹预测模型的仿真结果。结果表明,基于DE-SVM的航迹预测模型具有更高的预测精度,简单、可行、高效,且耗时少。In order to improve the accuracy of ship trajectory prediction,and solve the problem that accurate modeling is difficult and the neural network is prone to fall into local optimum,considering the fact that the target ship AIS data acquired in real time are less,a ship trajectory prediction model based on support vector machine(SVM)is proposed.The ship speed,course,longitude and latitude in AIS data are selected as sample feature variables,and the wavelet threshold denoising method is adopted to process the training data.The differential evolution(DE)algorithm is used to optimize the internal parameters of the model to improve the convergence speed and prediction accuracy of the model.The AIS data of a certain section of ship trajectory in Tianjin Port is selected,and the simulation results using the ship trajectory prediction models based on DE-SVM and BP neural network are compared.The results show that the ship trajectory prediction model based on DE-SVM is of higher prediction accuracy,it is simple,feasible and efficient,and it takes less time.
关 键 词:航迹预测 支持向量机(SVM) 差分进化(DE)算法 AIS BP神经网络
分 类 号:U675.79[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46