检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘天[1,2] 张丽杰 翁熹君 姚梦雷 黄继贵[1] 陈红缨[3] 黄淑琼[3] 杨雯雯[3] 蔡晶[3] 吴然[3] LIU Tian;ZHANG Li-jie;WENG Xi-jun;YAO Meng-lei;HUANG Ji-gui;CHEN Hong-ying;HUANG Shu-qiong;YANG Wen-wen;CAI Jing;WU Ran(Jingzhou Municipal Center for Disease Control and Prevention t Jingzhou,Hubei 434000,China;Chinese Field Epidemiology Training Program,Beijing 100050,China;Hubei Provincial Center for Disease Control and Prevention,Wuhan,Hubei 430079,China)
机构地区:[1]荆州市疾病预防控制中心,湖北荆州434000 [2]中国现场流行病学培训项目,北京100050 [3]湖北省疾病预防控制中心,湖北武汉430079
出 处:《实用预防医学》2020年第3期315-318,共4页Practical Preventive Medicine
基 金:湖北省卫生计生委创新团队项目(WJ2016JT-002);湖北省卫生计生委2018年联合基金项目(WJ2018H256)。
摘 要:目的探讨GM(1,1)模型、单纯自回归滑动平均(autoregressive integrated moving average,ARIMA)模型及其组成的2种组合模型在甲肝发病数预测中的应用。方法利用某省2009年1月-2013年12月的甲肝逐月发病数作为拟合数据,以2014年1-12月的逐月发病数作为预测数据;分别建立GM(1,1)模型、ARIMA模型、GM(1,1)-ARIMA组合模型、变权组合模型,然后根据4个模型的平均绝对百分比误差(mean absolute percentage error,MAPE)、平均误差率(Mean Error Rate,MER)、均方误差(mean square error,MSE)和平均绝对误差(mean absolute error,MAE)评价模型的效果。结果GM(1,1)模型、ARIMA模型、GM(1,1)-ARIMA组合模型和变权组合模型的拟合、预测的MAPE、MER、MSE和MAE依次分别为20.01%,18.35%,115.98,10.96和28.79%,31.84%,32.96,8.01;21.35%,19.52%,120.75,11.66和32.41%,35.65%,36.18,8.97;17.20%,15.69%,88.07,9.07和31.17%,34.17%,34.57,8.60;18.82%,16.99%,107.82,10.15和19.19%,18.67%,20.74,4.70。结论组合模型拟合及预测效果优于单一模型;变权组合模型为最优预测模型。Objective To explore the application of grey model GM(1,1),autoregressive integrated moving average(ARIMA)model and two models established on the basis of combination of the above-mentioned models to forecast of caseload of hepatitis A.Methods The data about monthly reported caseload of hepatitis A in a province from January 2009 to December 2013 were used as the fitting data,and the data about monthly reported caseload of hepatitis A from January to December in 2014 as the prediction data.GM(1,1)model,ARIMA model,GM(1,1)-ARIMA combination model and weight changeable combination model were established and the effects of the four models were evaluated based on mean absolute percentage error(MAPE),mean error rate(MER),mean square error(MSE)and mean absolute error(MAE).Results The MAPE,MER,MSE and MAE fitted and predicted by GM(1,1)model,ARIMA model,GM(1,1)-ARIMA combination model and weight changeable combination model were as follows:20.01%,18.35%,115.98,10.96 and 28.79%,31.84%,32.96,8.01;21.35%,19.52%,120.75,11.66 and 32.41%,35.65%,36.18,8.97;17.20%,15.69%,88.07,9.07 and 31.17%,34.17%,34.57,8.60;18.82%,16.99%,107.82,10.15 and 19.19%,18.67%,20.74,4.70.Conclusions The fitting and predictive effects of the combined model are superior to those of the single model.The weight changeable combination model is the optimal prediction model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.217.16